1 / 70

Theory of Thermal Electromagnetic Radiation

Theory of Thermal Electromagnetic Radiation. Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, Texas USA JET Summer School The Ohio State University (Columbus, OH) June 12-14, 2013. 1.) Intro-I: Probing Strongly Interacting Matter.

natane
Download Presentation

Theory of Thermal Electromagnetic Radiation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Theory of Thermal Electromagnetic Radiation Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, Texas USA JET Summer School The Ohio State University (Columbus, OH) June 12-14, 2013

  2. 1.) Intro-I:Probing Strongly Interacting Matter • Bulk Properties: • Equation of State • Phase Transitions: • (Pseudo-) Order Parameters • Microscopic Properties: • -Degrees of Freedom • - Spectral Functions • Would like to extract from Observables: • temperature + transport properties of the matter • signatures of deconfinement + chiral symmetry restoration • in-medium modifications of excitations (spectral functions)

  3. 1.2 Dileptons in Heavy-Ion Collisions e+ e- r • Sources of Dilepton Emission: • “primordial” qq annihilation (Drell-Yan): NN→e+e-X - • thermal radiation • - Quark-Gluon Plasma: qq → e+e-, … • - Hot+Dense Hadron Gas: p+p- → e+e-, … - _ • final-state hadron decays: p0,h → ge+e- , D,D → e+e-X, … Au + Au NN-coll. Hadron Gas “Freeze-Out” QGP

  4. qq 1.3 Schematic Dilepton Spectrum in HICs • Characteristic regimes in invariant • e+e-mass, M2 = (pe++ pe- )2 • Drell-Yan: primordial, • power law ~ M- n • thermal radiation: • - entire evolution • - Boltzmann ~ exp(-M/T) ImΠem(M,q;mB,T) Thermal rate: q0≈ 0.5GeV  Tmax ≈ 0.17GeV , q0≈ 1.5GeV  Tmax ≈ 0.5GeV

  5. 1.4 EM Spectral Function + QCD Phase Structure e+e-→ hadrons ~ ImPem/ M2 • Electromagn. spectral function • -√s ≤ 1 GeV: non-perturbative • -√s > 1.5 GeV: pertubative (“dual”) • Modifications of resonances • ↔ phase structure: • hadronic matter → Quark-Gluon Plasma? √s = M • Thermal e+e- emission rate from • hot/dense matter (lem >>Rnucleus ) • Temperature? Degrees of freedom? • Deconfinement? Chiral Restoration? ImΠem(M,q;mB,T)

  6. 1.5 Low-Mass Dileptons at CERN-SPS CERES/NA45 e+e-[2000] NA60 m+m- [2005] Mee [GeV] • strong excess around M ≈ 0.5GeV, M > 1GeV • quantitative description?

  7. 1.6 Phase Transition(s) in Lattice QCD - - ≈ qq / qq Tpcchiral~150MeV Tpcconf ~170MeV [Fodor et al ’10] • different “transition” temperatures?! • extended transition regions • partial chiral restoration in “hadronic • phase”! (low-mass dileptons!) • leading-order hadron gas

  8. Outline 2.) Chiral Symmetry in QCD - Nonperturbative QCD, Chiral Breaking + Hadron Spectrum 3.) Thermal Electromagnetic Emission Rates - EM Spectral Function: Hadronic vs. Partonic Regimes 4.) Vector Mesons in Medium - Many-Body Theory, Spectral Functions + Chiral Partners (r-a1) 5.) Quark-Gluon Plasma Emission - Perturbative vs. Lattice-QCD Rates, “Quark-Hadron-Duality” 6.) Dilepton + Photon Spectra in Heavy-Ion Collisions - Space-Time Evolution, Phenomenology + Interpretation 7.) Summary and Conclusions

  9. Q2≤ 1GeV2 → transition to “strong” QCD: • effective d.o.f. = hadrons (Confinement) • massive “constituent quarks” • mq* ≈ 350 MeV ≈ ⅓ Mp(Chiral Symmetry • ~ ‹0|qq|0› condensate! Breaking) ↕⅔fm 2.1 Nonperturbative QCD • well tested at high energies, Q2>1GeV2: • perturbation theory (as = g2/4π<< 1) • degrees of freedom = quarks + gluons (mu ≈ md ≈ 5 MeV) _

  10. 2.2 Chiral Symmetry in QCD Lagrangian g qL (bare quark masses: mu ≈ md ≈ 5-10MeV ) qL ChiralSU(2)V × SU(2)A transformation: Up to O(mq),LQCDinvariant under Rewrite LQCDusing left- and right-handed quark fields qL,R=(1±g5)/2 q : Invariance under isospin and “handedness”

  11. qR qL > > > > - - qR qL 2.3 Spontaneous Breaking of Chiral Symmetry - strong qq attraction  Chiral Condensate fills QCD vacuum: [cf. Superconductor: ‹ee›≠0 , Magnet ‹M› ≠ 0 , … ] Simple Effective Model: • assume “mean-field” , expand: • linearize: • free energy: • ground • state: Gap Equation

  12. JP=0±1± 1/2± 2.3.2 (Observable) Consequences of SBCS • mass gap , not observable! • but: hadronic excitations reflect SBCS • “massless” Goldstone bosons p 0,± • (explicit breaking: fp2 mp2= mq ‹qq›) • “chiral partners” split:DM ≈ 0.5GeV! • chiral trafo: , • Vector mesons r and w: - -ieijktk chiral singlet

  13. 2.3.3 Manifestation of Chiral Symmetry Breaking Axial-/Vector Correlators Constituent Quark Mass “Data”: lattice[Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] pQCD cont. ● chiral breaking:|q2| ≤ 1 GeV2 • quantify chiral breaking?

  14. 2.4 Chiral (Weinberg) Sum Rules • Quantify chiral symmetry breaking via observable spectral functions • Vector (r) - Axialvector (a1) spectral splitting [Weinberg ’67, Das et al ’67] t→(2n+1)p t→(2n)p [ALEPH ‘98, OPAL ‘99] pQCD pQCD • Key features of updated “fit”: [Hohler+RR ‘12] • r+a1 resonance, excited states (r’+a1’), universal continuum (pQCD!)

  15. 2.4.2 Evaluation of Chiral Sum Rules in Vacuum • pion decay • constants • chiral quark • condensates • vector-axialvector splitting (one of the) cleanest observable of • spontaneous chiral symmetry breaking • promising (best?) starting point to search for chiral restoration

  16. 2.5 QCD Sum Rules: r and a1 in Vacuum • dispersion relation: [Shifman,Vainshtein+Zakharov ’79] • lhs: hadronic spectral fct. • rhs: operator product expansion • 4-quark + gluon condensate dominant

  17. Outline 2.) Chiral Symmetry in QCD - Nonperturbative QCD, Chiral Breaking + Hadron Spectrum 3.) Thermal Electromagnetic Emission Rates - EM Spectral Function: Hadronic vs. Partonic Regimes 4.) Vector Mesons in Medium - Many-Body Theory, Spectral Functions + Chiral Partners (r-a1) 5.) Quark-Gluon Plasma Emission - Perturbative vs. Lattice-QCD Rates, “Quark-Hadron-Duality” 6.) Dilepton + Photon Spectra in Heavy-Ion Collisions - Space-Time Evolution, Phenomenology + Interpretation 7.) Summary and Conclusions

  18. 3.1 EM Correlator + Thermal Dilepton Rate g*(q) e+ e- (T,mB) [McLerran+Toimela ’85] Im Πem(M,q;T,mB) • EM Correlation Fct.: • Quark basis: • Hadron basis: → 9 : 1 : 2

  19. 3.2 EM Correlator in Vacuum: e+e-→ hadrons e+ e- p - p + rI =1 r pp 4p+6p+... e+ e- h1 h2 r+w+f KK q q _ qq … _ s ≥ sdual ~ (1.5GeV)2 pQCD continuum s < sdual Vector-Meson Dominance

  20. T > Tc: Chiral Restoration 3.3 Low-Mass Dileptons + Chiral Symmetry Vacuum • How is the degeneration realized? • “measure” vector withe+e- , axialvector?

  21. 3.4 Versatility of EM Correlation Function • Photon Emission Rate γ Im Πem(q0=q) ~O(αs ) e+ e- Im Πem(M,q) ~ O(1) g* same correlator! • EM Susceptibility ( → charge fluctuations) • Q2 -Q 2 =χem = Πem(q0=0,q→0) • EM Conductivity • sem = lim(q0→0) [ -ImΠem(q0,q=0)/2q0 ]

  22. Outline 2.) Chiral Symmetry in QCD - Nonperturbative QCD, Chiral Breaking + Hadron Spectrum 3.) Thermal Electromagnetic Emission Rates - EM Spectral Function: Hadronic vs. Partonic Regimes 4.) Vector Mesons in Medium - Many-Body Theory, Spectral Functions + Chiral Partners (r-a1) 5.) Quark-Gluon Plasma Emission - Perturbative vs. Lattice-QCD Rates, “Quark-Hadron-Duality” 6.) Dilepton + Photon Spectra in Heavy-Ion Collisions - Space-Time Evolution, Phenomenology + Interpretation 7.) Summary and Conclusions

  23. |Fp|2 dpp 4.1 Axial/Vector Mesons in Vacuum Introduce r, a1 as gauge bosons into free p +r +a1 Lagrangian p p r r -propagator: p EM formfactor pp scattering phase shift • 3 parameters: mr(0), g, Lr

  24. 4.2 r-Meson in Matter: Many-Body Theory r Sp > Sp > Sp interactions with hadrons from heat bath  In-Medium r-Propagator r Dr(M,q;mB,T) = [M2 – (mr(0))2 - Srpp- SrB- SrM]-1 • In-Medium • Pion Cloud Srpp = + [Chanfray et al, Herrmann et al, Urban et al, Weise et al, Koch et al, …] R=D, N(1520), a1, K1... r • Direct r-Hadron • Scattering SrB,M = h=N, p, K … [Haglin, Friman et al, RR et al, Post et al, …] • estimate coupling constants fromR→ r + h, • more comprehensive constraints desirable

  25. Sp r > Sp > g N → B* direct resonance g N → p N,D meson exchange 4.3 Constraints I: Nuclear Photo-Absorption total nuclear g -absorption in-mediumr-spectral cross section function at photon point D,N*,D* r N-1

  26. gN gA p-ex 4.3.2 r Spectral Function in Nucl. Photo-Absorption On the Nucleon On Nuclei • fixes coupling constants and • formfactor cutoffs for rNB • 2.+3. resonances melt • (selfconsistent N(1520)→Nr) [Urban,Buballa,RR+Wambach ’98]

  27. 4.4 r-Meson Spectral Function in Nuclear Matter r+N→B* resonances (low-density approx.) In-med. p-cloud + r+N→B* resonances In-med. p-cloud + r+N → N(1520) [Urban et al ’98] [Post et al ’02] [Cabrera et al ’02] rN=0.5r0 rN=r0 rN=r0 pN →rNPWA Constraints: gN ,gA • Consensus: strong broadening + slight upward mass-shift • Constraints from (vacuum) data important quantitatively

  28. Hot Meson Gas rB/r0 0 0.1 0.7 2.6 [RR+Gale ’99] 4.5r-Meson Spectral Functions “at SPS” Hot + Dense Matter mB =330MeV [RR+Wambach ’99] • r-meson “melts” in hot/dense matter • baryon density rB more important than temperature

  29. 4.6 Light Vector Mesons “at RHIC + LHC” • baryon effects remain important at rB,net = 0: • sensitive to rB,tot= rB + rB(r-N = r-N, CP-invariant) • w also melts, f more robust ↔ OZI - - [RR ’01]

  30. = = 4.7 Intermediate Mass: “Chiral Mixing” [Dey, Eletsky +Ioffe ’90] • low-energy pion interactions fixed by chiral symmetry 0 0 0 0 • mixing parameter • degeneracy with perturbative • spectral fct. down to M~1GeV • physical processes at M ≥ 1GeV: • pa1→ e+e-etc. (“4pannihilation”)

  31. p Sp Sp Sp r Sr Sr Sr 4.8 Axialvector in Medium: Dynamical a1(1260) p a1 resonance + + . . . = Vacuum: r In Medium: + + . . . [Cabrera,Jido, Roca+RR ’09] • in-medium p + r propagators • broadening ofp-rscatt. Amplitude • pion decay constant in medium:

  32. 4.9 QCD + Weinberg Sum Rules in Medium [Hatsuda+Lee’91, Asakawa+Ko ’93, Klingl et al ’97, Leupold et al ’98, Kämpfer et al ‘03, Ruppert et al ’05] [Weinberg ’67, Das et al ’67; Kapusta+Shuryak ‘94] T [GeV] rV,A/s Vacuum T=140MeV T=170MeV s [GeV2] [Hohler et al ‘12] • melting scenario quantitatively compatible with chiral restoration • microscopic calculation of in-medium axialvector to be done

  33. 4.10 Chiral Condensate + r-Meson Broadening > Sp effective hadronic theory > - • h = mq h|qq|h > 0 contains quark core + pion cloud • = Shcore + Shcloud ~ ++ • matches spectral medium effects: resonances + pion cloud • resonances + chiral mixing drive r-SF toward chiral restoration Sp r - - qq / qq0

  34. Outline 2.) Chiral Symmetry in QCD - Nonperturbative QCD, Chiral Breaking + Hadron Spectrum 3.) Thermal Electromagnetic Emission Rates - EM Spectral Function: Hadronic vs. Partonic Regimes 4.) Vector Mesons in Medium - Many-Body Theory, Spectral Functions + Chiral Partners (r-a1) 5.) Quark-Gluon Plasma Emission - Perturbative vs. Lattice-QCD Rates, “Quark-Hadron-Duality” 6.) Dilepton + Photon Spectra in Heavy-Ion Collisions - Space-Time Evolution, Phenomenology + Interpretation 7.) Summary and Conclusions

  35. e+ e- q q _ Sq Sq 5.1 QGP Emission: Perturbative vs. Lattice QCD small M → resummations, finite-T perturbation theory (HTL) Baseline: [Braaten,Pisarski+Yuan ‘91] Im []= + + + … collinear enhancement: Dq,g=(t-mD2)-1 ~ 1/αs dRee/d4q 1.45Tc q=0 • marked low-mass enhancement • comparable to recent lattice-QCD • computations [Ding et al ’10]

  36. 5.2 Euclidean Correlators: Lattice vs. Hadronic • Euclidean Correlation fct. Lattice (quenched) [Ding et al‘10] Hadronic Many-Body [RR ‘02] • “Parton-Hadron Duality” of lattice and in-medium hadronic …

  37. 5.2.2 Back to Spectral Function -Im Pem /(C T q0) • suggestive for approach to chiral restoration and deconfinement

  38. 5.3 Summary of Dilepton Rates: HG vs. QGPdRee /dM2 ~ ∫d3q f B(q0;T) ImPem • Lattice-QCD rate somwhat below Hard-Thermal Loop • hadronic→QGP toward Tpc: resonance melting + chiral mixing • Quark-Hadron Duality at all Mee?! (QGP rates chirally restored!)

  39. Outline 2.) Chiral Symmetry in QCD - Nonperturbative QCD, Chiral Breaking + Hadron Spectrum 3.) Thermal Electromagnetic Emission Rates - EM Spectral Function: Hadronic vs. Partonic Regimes 4.) Vector Mesons in Medium - Many-Body Theory, Spectral Functions + Chiral Partners (r-a1) 5.) Quark-Gluon Plasma Emission - Perturbative vs. Lattice-QCD Rates, “Quark-Hadron-Duality” 6.) Dilepton + Photon Spectra in Heavy-Ion Collisions - Space-Time Evolution, Phenomenology + Interpretation 7.) Summary and Conclusions

  40. 6.1 Space-Time Evolution + Equation of State • Evolve rates over • fireball expansion: • 1.order → lattice EoS: • - enhances temperature above Tc • - increases “QGP” emission • - decreases “hadronic” emission • initial conditions affect lifetime • simplified: parameterize space-time • evolution by expanding fireball • benchmark bulk-hadron observables Au-Au (200GeV) [He et al ’12]

  41. 6.1.2 Bulk Hadron Observables: Fireball Model [van Hees et al ’11] • Mulit-strange hadrons freeze-put at Tpc • Bulk-v2 saturates at ~Tpc

  42. 6.2 Di-Electron Spectra from SPS to RHIC Pb-Au(8.8GeV) Au-Au (20-200GeV) QM12 Pb-Au(17.3GeV) • consistent excess emission source • suggests “universal” medium effect around Tpc • FAIR, LHC? [cf. also Bratkovskaya et al, Alam et al, Bleicher et al, Wang et al …]

  43. + full acceptance correction… 6.3 In-In at SPS: Dimuons from NA60 • excellent mass resolution and statistics • for the first time, dilepton excessspectra could be extracted! [Damjanovic et al ’06]

  44. 6.3.2 NA60 Multi-Meter: Accept.-Corrected Spectra Spectrometer Emp. scatt. ampl. + T-r approximation Hadronic many-body Chiral virial expansion Chronometer Thermometer [CERN Courier Nov. 2009] • Thermal source! • Low-mass: good sensitivity to medium effects, T~130-170MeV • Intermediate-mass: T ~ 170-200 MeV > Tpc • Fireball lifetime tFB = (6.5±1) fm/c

  45. 6.3.3 Spectrometer m+m- Excess Spectra In-In(17.3AGeV) [NA60 ‘09] Thermal m+m-Emission Rate Mmm [GeV] [van Hees+RR ’08] • in-med r + 4p + QGP • invariant-mass spectrum directly • reflects thermal emission rate!

  46. 6.4 Conclusions from Dilepton “Excess” Spectra • thermal source (T~120-230MeV) • in-medium r meson spectral function • - avg. Gr(T~150MeV)~350-400MeV • Gr (T~Tpc) ≈ 600 MeV → mr • - “divergent” width ↔ Deconfinement?! • M > 1.5 GeV: QGP radiation • fireball lifetime “measurement”: • tFB ~ (6.5±1) fm/c (In-In) [van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ’08, Santini et al ‘10] Mmm [GeV]

  47. 6.5 The RHIC-200 Puzzle in Central Au-Au • PHENIX, STAR and theory: • - consistent in non-central collisions • - tension in central collisions

  48. 6.6 Direct Photons at RHIC Spectra Elliptic Flow ← excess radiation • Teffexcess = (220±30) MeV • QGP radiation? • radial flow? • v2g,dir as large as for pions!? • underpredcited by QGP-dominated • emission [Holopainen et al ’11, Dion et al ‘11]

  49. 6.6.2 Thermal Photon Radiation thermal + prim. g [van Hees, Gale+RR ’11] • flow blue-shift: Teff ~ T √(1+b)/(1-b) , b~0.3: T ~ 220/1.35 ~160 MeV • “small” slope + large v2 suggest main emission around Tpc • other explanations…? [Skokov et al ‘12; McLerran et al ‘12]

  50. 6.7 Direct Photons at LHC Spectra Elliptic Flow ● ALICE [van Hees et al in prep] • similar to RHIC (not quite enough v2) • non-perturbative photon emission rates around Tpc?

More Related