1 / 18

Implementation of titanium:sapphire lasers at ISOLDE RILIS

Implementation of titanium:sapphire lasers at ISOLDE RILIS. S. Rothe , V.N. Fedosseev , D. Fink, B.A. Marsh, R.E. Rossel , M. Seliverstov and K. Wendt. ISOLDE Workshop 2011. Outline. The RILIS principle The new solid- state laser system RILIS operation 2011

natara
Download Presentation

Implementation of titanium:sapphire lasers at ISOLDE RILIS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Implementation of titanium:sapphire lasers at ISOLDE RILIS S. Rothe, V.N. Fedosseev, D. Fink, B.A. Marsh, R.E. Rossel, M. Seliverstovand K. Wendt ISOLDE Workshop 2011

  2. Outline • The RILIS principle • The new solid-statelasersystem • RILIS operation 2011 • In-sourcelaserspectroscopyofAstatine

  3. The ResonanceIonization Laser Ion Source (RILIS) Laser ionization scheme Laser Ion Source laser beams line target • Simple setup at target site: same as surface ion source • RILIS lasers excite and ionize atoms At Z selective Laser tuned to Z = 85 Isotope of interest 205At Magnet set to A = 205 Auto-ionizing State Ionization potential Rydberg State Excited States Ground State

  4. The RILIS dye lasers Pump laser: Nd:YAG (532 nm) Repetition rate: 10 kHz, Pulse duration: 9ns Power: 100 W dye lasers: 2 x broadband (6 GHz) 1 x narrow band (1 GHz) After CVL removal 2010 Laser table Jan. 2011 > 10 different dyes used

  5. RILIS operation 1994 to 2010 demand Realistic curve for one laser system

  6. SPES ALTO RIKEN Laser ion sources World-Wide ? hot cavity ? ? hot cavity ? ? gas catcher ? ORNL OakRidge(off-line) hotcavity rep. rate ~10 kHz ti:salaser LISOL Louvain-la-Neuve gas cell rep. rate <200Hz dye laser RISIKO GISELE FURIOS RILIS • Mainz (off-line) rep. rate ~10 kHz ti:salaser • Caen (off-line) rep. rate ~10 kHz ti:salaser Jyväskylä gas cell rep. rate ~10 kHz ti:sa & dyelaser ISOLDE, Geneva hot cavity rep. rate 10 kHz dye laser TRILIS PNPI Vancouver hotcavity rep. rate ~10 kHz ti:salaser Gatchina hot cavity rep. rate ~10 kHz dye laser TIARA Takasaki hot cavity rep. rate 300Hz dye laser Selectiononly. updatedfrom C. Geppert (2007) V.Fedosseev (2010)

  7. Comparison dye vs. Ti:Sasystem Dye Ti:Sa 2x Dye 2x Ti:Sa Ti:Sa 3x Ti:Sa 3x Dye 4x Ti:Sa Dye Ti:Sa system is complementary

  8. The Ti:Salaser • Lasing medium: • solid-state Ti doped sapphire (Ti:Al2O3) • Hardness 9 birefringent tuner etalon end mirror laser crystal Serial production • 3d model • Mainz-Type • Design optimized for on-line operations output coupler pump beam • Prototype • Machined at Mainz University workshop • Serial production • 3 Ti:Sa modules available

  9. The RILIS Ti:Salasers Pump laser: Nd:YAG (532 nm) Repetition rate: 10 kHz Pulse length: 180 ns Power: 60 W Change of mirror sets in resonator No amplifier yet available No ageing 100 mm Ti:Sa lasers: Line width: 5 GHz Pulse length: 30-50 ns • Wavelength tuning range: • Fundamental (w) 690- 940nm (5 W) • 2nd harmonic (2w) 345- 470nm (1 W) • 3rd harmonic (3w) 230- 310nm (150 mW) • 4th harmonic (2w) 205-235 nm (50 mW) 6 resonator mirrorsets cover the Ti:Sa range

  10. Dye RILIS Nd:YAG Dye 2 l–meter SHG Dye 1 THG 10 kHz Master clock NarrowbandDye RILIS Dye Laser System GPS/HRS Target & Ion Source

  11. Ti:Sa & DyeRILIS Nd:YAG Dye 2 l–meter SHG Dye 1 THG 10 kHz Master clock NarrowbandDye RILIS Dye Laser System GPS/HRS Delay generator RILIS Ti:Sa Laser System Target & Ion Source Nd:YAG Ti:Sa 1 SHG/THG/FHG Ti:Sa 2 Faraday cup… Ti:Sa 3 l–meter LabVIEWbased DAQ pA – meter

  12. RILIS in operation

  13. RILIS in operation

  14. RILIS operation 2011 Ti:Sa involvement • Ion beams of 16 elements were produced since beginning of the running period: • 2573 h for on-line experiments • Ti:Sa system used already with 9 elements • Some additional tests only feasible because of the ‘spare’ laser system

  15. New modes of operation – The Dual RILIS Condition for dual operation: Temporal synchronization of the two laser systems Backup mode dye and Ti:Sa are exchangeable Ti:Sa only mode 100 W Nd:YAG laser available for non-resonant ionization Mixed mode Combination of dye and Ti:Sa Reduction in down time New RILIS elements Highest efficiencies

  16. At in-sourcespectroscopy a) Photoionization threshold : 75129(95) cm-1 b) Scan for 2nd step transitions (at TRIUMF) c) Verification of levels, yield measurements d) Scan of ionizing laser: converging Rydberg levels allow precise determination of the IP Rydberg-Ritz formula EIP(At) = 75151(1) cm-1 preliminary preliminary Phys. Rev. Letter in preparation

  17. Summary • A complementary second laser system of Ti:Sa lasers was installed at RILIS • RILIS operated smoothly >2500 h in 2011 • Dual RILIS (Combined dye and Ti:sapphire laser system) is in regular operation • In-source laser spectroscopy of Astatine led to development of an efficient ionization scheme and first and precise determination of the ionization potential • Outlook / Comments • RILIS scheme development could become partly opportunistic (e.g. astatine) • Machine protection, monitoring and remote control progressing • For Ti:Sa-only schemes RILIS could operate in on-call modevery soon • RILIS scheme database (cern.ch/riliselements) in beta phase

  18. Acknowledgements RILIS - Team CERN, EN-STI University of Mainz, Working group LARISSA Mainz, Germany Larissa KTH – Royal Institute of Technology & Knuth and Alice Wallenberg Foundation Stockholm, Sweden The Wolfgang-Gentner-Programme ofthe Bundesministerium für Bildung und Forschung (BMBF)

More Related