230 likes | 437 Views
利用 ARGO-YBJ 的月亮阴影数据对能标的讨论. 查 敏 中科院高能物理研究所. Motivation: constructing an energy “anchor”. normalization and absolute energy calibration and reference for indirect measurements. Important progress on elemental CR energy spectrum from satellite/balloon-born experiments. ISS-CREAM.
E N D
利用ARGO-YBJ的月亮阴影数据对能标的讨论 查敏 中科院高能物理研究所
Motivation: constructing an energy “anchor” normalization and absolute energy calibration and reference for indirect measurements Important progress on elemental CR energy spectrum from satellite/balloon-born experiments
ISS-CREAM ISS-CREAM is planned for launch in 2014
Direct experiment: CREAM example Few TeV region few 100 TeV (MC )
first suggestion by Clark 1957 Deficit of CR as looking at the moon Size of the deficit --> actual angular resolution Positon of the deficit pointing error Displacement of moon shadow energy calibration ( size.vs. E)
Selected MOON data Using moon shadow East-West displacement to calibration Erec: The relation between Erec and Nstrip 利用地磁场的磁谱仪的作用,再加上ARGO高海拔、低阈能得特点,挑选阴影数据通过对宇宙线轻成分在低能端能谱的测量,建立“能标”。
Summary of notable experiments 82 MAGIC
Energy calibrtion • Two systematic uncertainties may affect the Multiplicity-Energy relation: • the assumed primary CR chemical composition (7%) • the uncertainties of different hadronic models (6%) 55 s.d. The energy scale error is estimated to be smaller than 13% in the energy range 1 – 30 (TeV/Z). ARGO coll., Phys.Rev. D 84 (2011) 022003 / ARGO coll., Phys.Rev. D 85 (2012) 022002
Geomagnetic field International Geomagnetic Reference Field (IGRF) coefficients by IAGA
ARGO-YBJ Detector Low energy with digital signal High energy with analog readout • Trigger: 20 pads • Rate ~3.5 kHz • Dead time 4% • First data in July 2006 • Stop operation in February 2013
High altitude location ( 4300 m + 606g/cm2) Full coverage with RPC (92% covering factor)
analysis details • Shower production • Zenith angle range: 0-40° • Moon shadow statistics. Vs. shower attenuation effect • Moon shadow statistics • Data Selection • Add more inclined showers • detailed shower information 1 month moon shadow -9 sigma; Theta< 30 deg + |xc|<31 + |yc|<31 + Ns>300
--continued <R> < 22 m Non-light contamination ratio: 4-6% Proton showers steeper and narrower lateral distribution
--continued • Moon shadow analysis • Direct Integration method • 0-35 °light data • LGRFmodel • Shower production • CORSIKA package • Hadronic models: • EPOS-LHC + Fluka & QGSJETII-3 + QHEISHA; • Zenith angle range: 0-40° + uniform azimuth angle; • 5 groups composition • P /He /CNO/MgAlSi/Iron • Detector response simulation: G4ARGO package • Core sampling 1500 x 15000 m2; • Data Selection • Core: |Xc|<31 + |Yc|<31 m; • Good contained data: r + Rp70 <50 m; • Zenith < 35 deg • <R> <22 m
Moon shadow result 400-800 800-1000 1000-2000 >2000
Summary and Outlook • ARGO-YBJ is a good candidate to construct an “energy anchor”; • Selection of light component is OK; • Moon shadow measurement offers cross check; • Preliminary result is encouraging; • To finish work and understand systematic uncertainty;
Moon shadow: an important tool to check the detector performances and offer energy calibration 10standard deviations /month Energy calibration West displacement of the shadow caused by the geomagnetic field Bending ≈ 1.58°Z/E (TeV) ARGO coll., Phys.Rev. D 84 (2011) 022003 / ARGO coll., Phys.Rev. D 85 (2012) 022002