200 likes | 313 Views
Einführung in die logische Programmierung mit PROLOG. Prof.-Dr. Peter Brezany Institut für Scientific Computing Universität Wien, Nordbergstraße 15/C315 1090 Wien Tel. : 01/4277 39425 E-mail : brezany@par.univie.ac.at Sprechstunde: Dienstag, 13.00-14.00.
E N D
Einführung in die logische Programmierung mit PROLOG Prof.-Dr. Peter Brezany Institut für Scientific Computing Universität Wien, Nordbergstraße 15/C315 1090 Wien Tel. : 01/4277 39425 E-mail : brezany@par.univie.ac.at Sprechstunde: Dienstag, 13.00-14.00
Fevzi Belli. Einführung in die logische Programmie-rung mit Prolog.B.I. Wissenschaftsverlag, 1988 (benutzt für dieses Skriptum) Carlton Mc, Donald, Masoud Yazdani. Prolog Programming – a Tutorial Introduction. Blackwell Scientific Publications, 1990. Jean B. Rogers. A Prolog Primer.Addison-Wesley, 1986. Literatur
Einleitung • prozedurale Denkweise als Grundlage konventioneller, imperativer • Programmierung • PROGRAMM = ALGORITHMUS + DATENSTRUKTUR • ___________________________________________________ • Übergang zur logischen Programmierung (Anfangsüberlegung) • ALGORITHMUS = LOGIK + STEUERUNG • Die Logik-Komponente definiert, welches Wissen und welche • Zielsetzung dem Algorithmus zugrunde liegen; sie also gibt die präzise • Spezifikation dieses Algorithmus an. • Die Steuerungs-Komponente gibt dagegen die „Strategie“ an, d.h. wie • diese Definitionen einzusetzen sind. • Programm = Logik + Datenstruktur + Steuerung • Programmierungsmodel (Was sieht der Programmierer?): • PROGRAMM = LOGIK
PROLOG (PROgramming in LOGic) wurde Anfang der siebziger Jahre von A. Colmerauer und einer Reihe von Wissenschaftlern an der Universität Marseille konzipiert und erstmal implementiert. Durch die Wahl von Prolog als Sprache der Rechner „5th. Generation“ in dem breit angelegten japanischen Forschungs- und Entwicklungsvorhaben gelang dieser Sprache der weltweite Durchbruch zu einer „Sprache der Künstlichen Intelligenz“. Geschichte von Prolog
Prolog-Programme bestehen aus Aussagen („Klauseln“, „clauses“ oder „statements“, jedoch nicht aus Anweisungen!). Die Reihenfolge der Aussagen spielt bei der Ausführung der Programme keine Rolle. „Klauseln“ („clauses“) „Fakten“ („facts“) auch „allgemeine Tatsachen“ genannt, z.B. „Otto ist lieb.“ /* Formulierung auf Deutsch */ „lieb(otto).“ /* Prolog-Formulierung */ „Otto ist Vater von Karl.“ /* natürlich-sprachliche Formulierung */ „ist_vater(otto, karl).“ /* Prolog-Formulierung, wobei die Reihenfolge der Argumente „otto“ und „karl“ wichtig sind */ Bestandteile eines Prolog-Programms
- „Regeln“ („rules“), z.B. „Wenn ein Mann lieb ist und Vater eines Kindes ist, so ist er ein lieber Vater vom Kind.“ In Prolog: „ist_lieb_vater(Mann, Kind) :- lieb(Mann), ist_vater(Mann, Kind).“ Bestandteile eines Prolog-Programms (2)
- „Abfragen“ („queries“) fangen mit “?-“ an, z.B. “?- lieb(otto).“ (Sprich: „Ist Otto lieb?“ Bestandteile von Klauseln sind „Terme“, die folgende Ausprägungen haben können: „Atom“ oder „Funktor“, z.B. otto, ‘OTTO‘ ganze Zahl, z.B. 1923 „Variable“, z.B. Papa, SOHN „Struktur“, z.B. date(05, 6, 16, [samstag, samedi]) Bestandteile eines Prolog-Programms (3)
Ein typisches Prolog-Programm besteht aus: - Aufstellung von Fakten, - Aufstellung von Regeln - vielen, vielen /* Kommentaren */ - und – während der Benutzung – - Abfragen - Hinzufügung weiterer Fakten und Regeln. Fakten und Regeln bilden die Wissensbasis. Z.B. bildet der Fakt lieb(otto). /* Otto ist lieb. */ bereits eine (allerdings sehr „kleine“) Wissensbasis. Typisches Prolog-Programm
Im Abfrage-Modus („query“) können an die Wissensbasis beliebige Fragen gestellt werden, z.B. bei der o.g. Beispiel-Wissensbasis: ?- lieb(otto). /* Ist Otto lieb? */ antwortet das (Laufzeit-)System (Übersetzer) yes Hat man die Beispiel-Wissensbasis gelöscht, so erhält man die Antwort no Wegen des „yes/no“-Verhaltens wird der Übersetzer oft „Beweiser“ genannt – das ist aber nicht die einzige Kommunikationsform. Mann kann die Wissensbasis während des Dialogs durch weiteres Wissen erweitern und dadurch „qualifiziertere“ Antworten vom System erweitern. Typischer Mensch-/Maschine-Dialog bei Prolog-Programmen
männlich(otto). männlich(gustav). männlich(eike). weiblich(utta). teuer(pelzmantel). ------------------------ Das ist eine Wissensbasis. Andere Beispiele für Fakten
Will man z.B. alle mänlichen Objekte der o.g. Beispiel-Wissenbasis aufstellen oder „generieren“, wäre es möglich, wie folgt vorzugehen: ?- männlich(otto). ?- männlich(gustav). yes yes ?- männlich(eike). ?- männlich(utta). yes no ?- männlich(dallidallimatschocha). no Einfacher und eleganter ist es, mit „Variablen“ zu arbeiten, die mit einem Grossbuchstaben anfangen und Stellvertreter aller Objekte des Prädikats darstelen: ?- männlich(Person). /* Das System antwortet dann: */ Person = otto In der obigen Abfrage ist „Person“ eine Variable. Sie bewirkt sinngemäß eine Fragestellung an das System: „Gib mir alle Objekte in der Wissensbasis, die die Argumente des Prädikats „männlich“ sind.“ Eine Variable wird auf eine Konstante „instanziert“, wenn in der Wissensbasis durch „pattern matching“ ein Objekt gefunden werden kann, für das sie steht. Sonnst kann sie nicht instanziert werden. Variablen
Die Variable „Person“ wird oben auf die Konstante „otto“ instanziert. Diese Stelle wird in der Wissensbasis markiert. Die Abfrage kann mit “;“ fortgesetzt werden, um evtl. Weitere passende Objekte zu finden: ?- männlich(Person). Person = otto; /* 1. Antwort */ Person = gustav; /* 2. Antwort */ Person = eike; /* 3. Antwort */ no /* kein passendes Objekt mehr */ Das ist die 2. Form der Benutzung einer Wissensbasis und der Kommunikation mit dem System: die „Generierung“ von Antworten. Variablen (2)
Folgende Fakten mögen gelten, d.h. Sie bilden eine Wissensbasis: mag(otto, essen). mag(utta, otto). mag(utta, milch). mag(otto, utta). mag(otto, milch). Abfragen: ?- mag(otto, utta), mag(utta, essen). no ?- mag(otto, utta), mag(utta, milch). yes Hier sind 2 Ziele („goals“) zu erreichen oder 2 Aussagen zu beweisen, die durch ein Komma im Sinne einer logischen UND-Verknüpfung aneinander gekettet sind. Die Ziele werden einzeln und hintereinander („vom links nach rechts“) bewiesen oder abgelehnt. Mißlingt der Beweis des ersten Ziels, so wird nicht weiter „gematcht“. Auch mit Variablen können Konjunktionen gebildet werden: ?- mag(otto, Irgendwas), mag(utta, Irgendwas). Irgendwas = milch; no Konjunktionen bei Abfragen
Nehmen wir an, wir wollen folgende Tatsache angeben: „Otto mag essen.“ Wir können schreiben „Otto mag Brot.“ „Otto mag Wurst.“ „Otto mag Käse.“ ... und „Brot is essbar.“ „Wurst ist essbar.“ „Käse ist essbar.“ ... Besser wäre die Angabe einer allgemeinen Regel, z.B.: „Otto mag ein Objekt O, wenn O esbar ist.“ Eine Regel kann auch Definitions-Charakter haben, z.B. Bruder-Beziehung: „Person ist der Bruder der Person2, wenn Person1 männlich ist, und Person1 und Person2 dieselben Eltern haben.“ Regeln
Die o.a. Regel wird in Prolog wie folgt formuliert: mag(otto, O) :- essbar(O). Außerhalb dieser Regel kann der Bezeichner O wieder (z.B. zur Bezeichnung anderer Variablen) benutzt werden; diese Variable steht mit der obigen Relation nicht mehr im Zusammenhang. Das Symbol “:-“ (sprich: „wenn“) deutet das Zeichen ““ (Implikation) an. Eine Regel („rule“) in Prolog besteht aus 2 Teilen: - einem „Kopf“ („head“) (prädikatenlogisch: „Konklusion“) - einem „Rumpf“ („body“) (prädikatenlogisch: „Prämisse“) Der Kopf darf nur eine Aussage (als Ergebnis) enthalten, während der Rumpf aus mehreren, durch Konjunktion miteinander verbundenen Aussagen bestehen kann. Darstellung der Regeln in Prolog
Folgende Wissensbasis sei gegeben: männlich(otto). männlich(karl). weiblich(brunhild). weiblich(irmhild). eltern(karl, irmhild, otto). eltern(brunhild, irmhild, otto). Die letzten Prädikate haben drei Objekte: eltern(Kind, Mutter, Vater). ist_bruder(Bru, Person1) :- /* Regel in Wissenbasis */ männlich(Bru), eltern(Bru, Ma, Pa), eltern(Person1, Ma, Pa). ?- ist_bruder(karl, brunhild). Yes ?- ist_bruder(karl, Person). Person = brunhild Beispiele für Regeln
Logische Grundlagen • Prädikatenlogik erster Ordnung, Ableitkarbeit der Aussagen • Diese Themen haben wir schon in der VU diskutiert. • 2. Horn-Klauseln und Prolog • Für maschinelles Beweisen können effiziente Algorithmen • für spezielle Klauselsysteme erstellt werden. Diese Systeme • haben eingeschränkte Allgemeinheit, ohne dadurch an der • Pragmatik viel zu verlieren., d.h. ohne als Ergebnis Trivialitäten • erzielen zu müssen. • Durch solche Einschränkungen soll eine spezielle Klauselform • gefunden werden.
Eine Horn-Klausel (Horn publizierte das in 1951) ist eine Klausel mit höchstens einer Konklusion. Es gibt folgende zulässige Formen von Horn-Klauseln. Allgemeine Horn-Klauseln: b a1 ... an - Horn-Klauseln ohne rechten Teil: Das sind Tatsachen (d.h. sie gelten ohne Prämisse, oder sie sind immer wahr) und werden „asserions“ genannt: b - Horn-Klausel ohne Kopf: Das sind Behauptungen oder Aussagen, die abgeleitet (d.h. bewiesen oder verworfen) werden müssen. Sie werden auch „procedure calls“, „Negationen“ oder „denials“ genannt: a1 ... an (sprich: „Behauptung, dass für kein Argument a1 und ... an gilt.) - Leere Horn-Klausel: Diese Klausel ist immer falsch und wird auch „Widerspruch“ oder „contradiction“ genannt: Horn-Klauseln