100 likes | 184 Views
www.carom-maths.co.uk. Activity 2-15 : The Cross-ratio. What happens in the above diagram if we calculate ?. Say A = (p, ap ), B = (q, bq ), C = (r, cr ), D = (s, ds). . So ap = mp + k , bq = mq + k, cr = mr + k , ds = ms +k . . .
E N D
www.carom-maths.co.uk Activity 2-15 : The Cross-ratio
Say A = (p, ap), B= (q, bq), C = (r, cr), D = (s, ds). So ap = mp + k, bq = mq + k, cr = mr + k, ds = ms +k. .
. Strange fact: this answer does not depend on m or k. So whatever line y = mx + k falls across the four others, the cross-ratio of lengths will be unchanged.
This makes the cross-ratio an invariant, andof great interest in a field of maths known as projective geometry. Projective geometry might be described as ‘the geometry of perspective’. It is maybe a more fundamental form of geometry than the Euclidean geometry we generally use. The cross-ratio has an ancient history; it was known to Euclid and also to Pappus, who mentioned its invariant properties.
Given four complex numbers z1, z2, z3, z4, we can define their cross-ratio as . Theorem: the cross-ratio of four complex numbers is real if and only if the four numbers lie on a straight line or a circle. Task: certainly 1, i, -1 and –i lie on a circle. Show the cross-ratio of these numbers is real.
Proof: we can see that (z3-z1)eiα = λ(z2-z1), and (z2-z4)eiβ = µ(z3-z4). Multiplying these together gives (z3-z1) (z2-z4)ei(α+β)= λµ(z3-z4)(z2-z1), or
So the cross-ratio is real if and only if ei(α+β) is, which happens if and only if α + β = 0 orα + β = π. But α + β = 0 implies that α = β = 0, and z1, z2, z3 and z4 lie on a straight line, while α + β = π implies that α and β are opposite angles in a cyclic quadrilateral, which means that z1, z2, z3 and z4 lie on a circle. We are done!
With thanks to: Paul Gailiunas Carom is written by Jonny Griffiths, mail@jonny.griffiths.net