1 / 70

Automatic Generation of Path Conditions for Concurrent Timed Systems

Automatic Generation of Path Conditions for Concurrent Timed Systems. Doron Peled, University of Warwick Joint work with Saddek Bensalem, Stavros Tripakis, Hongyang Qu. Unit testing: Selection of test cases (for white-box testing). The main problem is to select a good coverage

neorah
Download Presentation

Automatic Generation of Path Conditions for Concurrent Timed Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Automatic Generation of Path Conditions for Concurrent Timed Systems Doron Peled, University of Warwick Joint work with Saddek Bensalem, Stavros Tripakis, Hongyang Qu

  2. Unit testing: Selection of test cases (for white-box testing) The main problem is to select a good coverage criterion. Some standard options are: • Cover all paths of the program. • Execute every statement at least once. • Each decision (diamond node on flow chart) has a true or false value at least once. • Each condition predicate is taking each truth value at least once. • Check all possible combinations of conditions in each decision.

  3. Cover all the paths of the program (skip) Infeasible. Consider the flow diagram on the left. It corresponds to a loop. The loop body has 5 paths. If the loops executes 20 times there are 5^20 different paths! May also be unbounded: number of iterations depend on data. So also forget about covering all executions!

  4. How to cover the executions? if (A>1)&(B=0) then X=X/A; if (A=2)|(X>1) then X=X+1; • Choose values for A,B,X at the beginning that would force the right path/conditions/predicates. • Value of X may change, depending on A,B. • What do we want to cover? Paths? Statements? Conditions?

  5. By choosing A=2,B=0,X=3 each statement will be chosen. The case where the tests fail is not checked! if (A>1)&(B=0) then X=X/A; if (A=2)|(X>1) then X=X+1; Statement coverageExecute every statement at least once Now x=1.5

  6. Can be achieved using A=3,B=0,X=3 A=2,B=1,X=1 Problem: Does not test individual predicates. E.g., when X>1 is erroneous in second decision. if (A>1)&(B=0) then X=X/A; if (A=2)|(X>1) then X=X+1; Decision coverageEach decision (diamond node in flow graph) tested with true and false outcome at least once.

  7. For example: A=1,B=0,X=3 A=2,B=1,X=0 lets each condition be true and false once. Problem:covers only the path where the first test fails and the second succeeds. if (A>1)&(B=0) then X=X/A; if (A=2)|(X>1) then X=X+1; Condition coverage (skip)Each predicate has a trueand false value at least once.

  8. Preliminary:Relativizing assertions A (B) : x1= y1 * x2 + y2 /\ y2 >= 0 Relativize B) w.r.t. the assignment becomes B) [Y\g(X,Y)] (I.e., (B) expressed w.r.t. variables at A.)  (B)A =x1=0 * x2 + x1 /\ x1>=0 Think about two sets of variables,before={x, y, z, …} after={x’,y’,z’…}. Rewrite (B) using after, and the assignment as a relation between the set of variables. Then eliminate after. Here: x1’=y1’ * x2’ + y2’ /\ y2’>=0 /\x1=x1’ /\ x2=x2’ /\ y1’=0 /\ y2’=x1now eliminate x1’, x2’, y1’, y2’. Y=g(X,Y) (y1,y2)=(0,x1) B A (y1,y2)=(0,x1) B

  9. Verification conditions: tests B T F C) is transformed toB)= t(X,Y) /\C) D) is transformed toB)=t(X,Y) /\ D) B)= D) /\ y2x2 t(X,Y) C D B T F y2>=x2 C D

  10. How to find values for coverage? • Put true at end of path. • Propagate path backwards. • On assignment, relativize expression. • On “yes” edge of decision node, add decision as conjunction. • On “no” edge, add negation of decision as conjunction. • Can be more specific when calculating condition with multiple condition coverage. A>1/\B=0 no yes X=X/A A=2\/X>1 true no yes X=X+1 true

  11. How to find values for coverage? (A2 /\ X/A>1) /\ (A>1 & B=0) A>1/\B=0 A2 /\X/A>1 no yes Need to find a satisfying assignment: A=3, X=6, B=0 Can also calculate path condition forwards. X=X/A A  2/\X>1 A=2\/X>1 true no yes X=X+1 true

  12. How to cover a flow chart?(skip) • Cover all nodes, e.g., using search strategies: DFS, BFS. • Cover all paths (usually impractical). • Cover each adjacent sequence of N nodes. • Probabilistic testing. Using random number generator simulation. Based on typical use. • Chinese Postman: minimize edge traversalFind minimal number of times time to travel each edge using linear programming or dataflow algorithms.Duplicate edges and find an Euler path.

  13. Test cases based on data-flow analysis (skip) • Partition the program into pieces of code with a single entry/exit point. • For each piece find which variables are set/used/tested. • Various covering criteria: • from each set to each use/test • From each set to some use/test. X:=3 t>y x>y z:=z+x

  14. Some real life story • An expert programmer inspects the code of NASA MER. • He observe using his experience and intuition that some execution path is suspicious. • He decides how to force this path to execute, e.g., by figuring some inputs and initial values. • He executes the path, showing his supervisor the presence of an error. • We want to build some tools to help him with this process. • We’ll use LTL to help with formalizing the intuition on where the error is.

  15. Learning from another technique: Model Checking • Automaton description of a system B. • LTL formula . Translate  into an automaton P. • Check whether L(B)  L(P)=. • If so, S satisfies . Otherwise, the intersection includes a counterexample. • Repeat for different properties. ¬ 

  16. Unit Checking Unit Testing Model Checking

  17. LTLAut Model Checker Path Path condition calculation Flowchart Compiler Transitions First order instantiator Test monitoring New: Test case generation based on LTL specification

  18. Path conditions • Path in flow chart  multiple executions following path. • First order formula. • All executions of a path must start with initial values satisfying the path condition. • In deterministic code, there can be only one execution starting with particular values, hence all executions starting with initial values satisfying the path condition will follow that path. • In nondeterministic code, each such initial value has an execution following a path. May need to insert synchronizing code. • Generalizations: include inputs, being more specific about decisions made in path.

  19. Goals • Verification of software. • Compositional verification. Use only a unit of code instead of the whole code. • Parameterized verification. Verifies a procedure with any value of parameters in “one shot” • Generating test cases via path conditions: A truth assignment satisfying the path condition. Helps derive the demonstration of errors. • Generating appropriate values to missing parameters.

  20. ¬at l2 at l2/\ xy ¬at l2 at l2/\ x2y Spec: ¬at l2U (at l2/\ xy /\ (¬at l2/\(¬at l2U at l2 /\ x2y ))) Observation:each node hasconjunctions of predicates onprogram variables and programcounters • Automatic translation of LTL formula into an automaton [GPVW95] • LTL is interpreted over finite sequences. • Can use other (linear) specification. • Property specifies the path we want to find (SPIN: never claim),not the property that must hold for all paths (for this, take the negation).

  21. Divide and Conquer • Intersect property automaton with theflow chart, regardless of the statements and program variables expressions. • Add assertions from the property automaton to further restrict the path condition. • Calculate path conditions for sequences found in the intersection. • Calculate path conditions on-the-fly. Backtrack when condition is false.Thus, advantage to forward calculation of path conditions (incrementally).

  22. l2:x:=x+z l3:x<t l1:… Spec: (only program counters here)¬at l2U (at l2/\¬at l2/\(¬at l2U at l2)) at l2 l2:x:=x+z ¬at l2 X = ¬at l2 at l2 l3:x<t ¬at l2 at l2 l2:x:=x+z Either allexecutions of a path satisfy the formula or none. at l2 Sifts away path not satisfying formula. Then calculate path condition.

  23. l2:x:=x+z l3:x<t l1:… Spec: ¬at l2U (at l2/\ xy /\ (¬at l2/\(¬at l2U at l2 /\ x2y ))) xy l2:x:=x+z ¬at l2 X = at l2/\ xy l3:x<t x2y ¬at l2 l2:x:=x+z Only some executions of path may satisfy formula at l2/\ x2y Modify calculation of path condition to incorporate property

  24. Calculating the intersection of the property automaton and flow graph (abstract variables away). ¬a a a <>a s1 s2 q1 s3 q2 ¬a a Acceptance isdetermined bypropertyautomaton. s1,q1 s2,q1 s1,q2 s3,q2

  25. How to generate test cases • Take the intersection of an LTL automaton (for a never claim) with the flow graph. Some paths would be eliminated for not satisfying the assertions on the program counters. • Seeing same flow chart node does not mean a loop: program variables may value. Use iterative deepening. • For each initial path calculate the path condition. Backtrack if condition simplifies to false. • Report path condition based on flow graph path+LTL assertions. • Always simplify conditions!

  26. How the LTL formula directs the search Consider (x=4)U (x=5/\o…) x=4 x<5 false true x=5 y:=7 x:=x+1

  27. How the LTL formula directs the search Consider x=4U (x=5/\o…) x=4 x<5 false true x=5 y:=7 x:=x+1

  28. How the LTL formula directs the search Consider x=4U (x=5/\o…) x=4 X=4 x<5 false true x=5 y:=7 x:=x+1

  29. How the LTL formula directs the search Consider x=4U (x=5/\o…) x=4 X=4 x<5 false true x=5 X=4 y:=7 x:=x+1

  30. How the LTL formula directs the search Consider x=4U (x=5/\o…) x=4 X=4 x<5 false true x=5 X=4 This is in acontradiction y:=7 x:=x+1 X=4 x<5 true

  31. How the LTL formula directs the search Consider x=4U (x=5/\o…) x=4 X=5 x<5 false true x=5 X=4 y:=7 x:=x+1

  32. How the LTL formula directs the search Consider x=4U (x=5/\o…) x=4 X=5 x<5 false true x=5 X=4 y:=7 x:=x+1

  33. l0 Example: GCD l1:x:=a l2:y:=b l3:z:=x rem y l4:x:=y l5:y:=z no l6:z=0? yes l7

  34. l0 Example: GCD l1:x:=a l2:y:=b Oops…with an error (l4 and l5 were switched). l3:z:=x rem y l4:y:=z l5:x:=y no l6:z=0? yes l7

  35. Why use Temporal specification • Temporal specification for sequential software? • Deadlock? Liveness? – No! • Captures the tester’s intuition about the location of an error:“I think a problem may occur when the program runs through the main while loop twice, then the if condition holds, while t>17.”

  36. l0 Example: GCD l1:x:=a l2:y:=b a>0/\b>0/\at l0 /\at l7 l3:z:=x rem y at l0/\a>0/\b>0 l4:y:=z l5:x:=y no l6:z=0? yes at l7 l7

  37. l0 Example: GCD l1:x:=a l2:y:=b a>0/\b>0/\at l0/\at l7 l3:z:=x rem y Path 1: l0l1l2l3l4l5l6l7a>0/\b>0/\a rem b=0 Path 2: l0l1l2l3l4l5l6l3l4l5l6l7a>0/\b>0/\a rem b0 l4:y:=z l5:x:=y no l6:z=0? yes l7

  38. Potential explosion Bad point: potential explosion Good point: may be chopped on-the-fly

  39. Now we add time • Detailed model, for each transition we have 4 parameters [l, u, L, U]: • l Needs to be enabled at least that much. • u Cannot be enabled without taken longer than that. • L Least time for transformation to occur (after been chosen). • U Transformation cannot take more than that.

  40. Translation to timed automata s1at l c1c2x2:=0 c1c2x2:=0 c1c2x1:=0 c1c2x1:=0 c1c2x1,x2:=0 c1c2 c1c2 c1c2 s3,at lx2<u2x1<u1 c1c2 c1c2 s2,at lx1<u1 s4,at lx2<u2 c1c2x2:=0 c1c2x1:=0 Timing out the enabledness:Zero counters,Cannot wait enabled too much.

  41. Translation to timed automata s1at l c1c2x2:=0 c1c2x2:=0 c1c2x1:=0 c1c2x1:=0 c1c2x1,x2:=0 c1c2 c1c2 c1c2 s3,at lx2<u2x1<u1 c1c2 c1c2 s2,at lx1<u1 s4,at lx2<u2 c1c2x2:=0 c1c2x1:=0 ac x1l1x1:=0 bc x1l1x1:=0 x2l2x2:=0 x2l2x2:=0 bc ac s5x1<U1 s6x2<U2 Can fire only if waited enough,Zero counters again.

  42. Translation to timed automata s1at l c1c2x2:=0 c1c2x2:=0 c1c2x1:=0 c1c2x1:=0 c1c2x1,x2:=0 c1c2 c1c2 c1c2 s3,at lx2<u2x1<u1 c1c2 c1c2 s2,at lx1<u1 s4,at lx2<u2 c1c2x2:=0 c1c2x1:=0 ac x1l1x1:=0 bc x1l1x1:=0 x2l2x2:=0 x2l2x2:=0 bc ac s5x1<U1 s6x2<U2 x1L1 x2L2 af bf s8 s7

  43. Its easy to select an interleaved sequence. But due to time limitations, it may execute in a different order. Just the order on events from the same process and using same variables is to be considered. Should we really look at paths? a a b b c d c Samevariable d Sameprocess

  44. Generate an automaton for all consistent interleavings b a a b c d a b c Intersect this automaton with automaton for system.Calculate “partial order” condition: start from leaves.When there is a choice, usedisjunct. d c b d c

  45. Generate an automaton for all consistent interleavings b a a b c d c b d c

  46. Generate an automaton for all consistent interleavings b a a b c d c b d c

  47. Generate an automaton for all consistent interleavings b a a b c d c b d c

  48. An example — a simple network protocol

  49. The flow charts

  50. Path — no timeout

More Related