190 likes | 450 Views
Principles of Corporate Finance Sixth Edition Richard A. Brealey Stewart C. Myers. Chapter 10. A Project Is Not a Black Box. Lu Yurong. McGraw Hill/Irwin. Topics Covered. Sensitivity Analysis Break Even Analysis Monte Carlo Simulation Decision Trees. How To Handle Uncertainty.
E N D
Principles of Corporate Finance Sixth Edition Richard A. Brealey Stewart C. Myers Chapter 10 A Project Is Not a Black Box Lu Yurong McGraw Hill/Irwin
Topics Covered • Sensitivity Analysis • Break Even Analysis • Monte Carlo Simulation • Decision Trees
How To Handle Uncertainty Sensitivity Analysis - Analysis of the effects of changes in sales, costs, etc. on a project. Scenario Analysis - Project analysis given a particular combination of assumptions. Simulation Analysis - Estimation of the probabilities of different possible outcomes. Break Even Analysis - Analysis of the level of sales (or other variable) at which the company breaks even.
Sensitivity Analysis Example Given the expected cash flow forecasts for Otobai Company’s Motor Scooter project, listed on the next slide, determine the NPV of the project given changes in the cash flow components using a 10% cost of capital. Assume that all variables remain constant, except the one you are changing.
Sensitivity Analysis Example - continued NPV= 3.43 billion Yen
Sensitivity Analysis Example - continued Possible Outcomes
Sensitivity Analysis Example - continued NPV Calculations for Optimistic Market Size Scenario NPV= +5.7 bil yen
Sensitivity Analysis Example - continued NPV Possibilities (Billions Yen)
Break Even Analysis • Point at which the NPV=0 is the break even point • Otobai Motors has a breakeven point of 85,000 units sold. PV Inflows 400 200 19.6 Break even NPV=0 PV (Yen) Billions PV Outflows Sales, 000’s 85 200
Monte Carlo Simulation • Step 1: Modeling the Project • Step 2: Specifying Probabilities • Step 3: Simulate the Cash Flows Modeling Process
Decision Trees 960 (.8) 220(.2) 930(.4) 140(.6) 800(.8) 100(.2) 410(.8) 180(.2) 220(.4) 100(.6) +150(.6) +30(.4) -550 NPV= ? Turboprop -150 +100(.6) +50(.4) or 0 -250 NPV= ? Piston
Decision Trees 960 (.8) 220(.2) 930(.4) 140(.6) 800(.8) 100(.2) 410(.8) 180(.2) 220(.4) 100(.6) 812 456 660 364 148 +150(.6) +30(.4) -550 NPV= ? Turboprop -150 +100(.6) +50(.4) or 0 -250 NPV= ? Piston
Decision Trees 960 (.8) 220(.2) 930(.4) 140(.6) 800(.8) 100(.2) 410(.8) 180(.2) 220(.4) 100(.6) 812 456 660 364 148 +150(.6) +30(.4) -550 NPV= ? Turboprop -150 +100(.6) +50(.4) or 0 -250 NPV= ? Piston
Decision Trees 960 (.8) 220(.2) 930(.4) 140(.6) 800(.8) 100(.2) 410(.8) 180(.2) 220(.4) 100(.6) 812 456 660 364 148 +150(.6) +30(.4) -550 NPV= ? Turboprop *450 -150 +100(.6) +50(.4) or 0 331 -250 NPV= ? Piston
Decision Trees 960 (.8) 220(.2) 930(.4) 140(.6) 800(.8) 100(.2) 410(.8) 180(.2) 220(.4) 100(.6) NPV=888.18 812 456 660 364 148 +150(.6) +30(.4) -550 NPV= ? NPV=444.55 Turboprop *450 -150 NPV=550.00 +100(.6) +50(.4) or 0 331 -250 NPV= ? NPV=184.55 Piston
Decision Trees 960 (.8) 220(.2) 930(.4) 140(.6) 800(.8) 100(.2) 410(.8) 180(.2) 220(.4) 100(.6) NPV=888.18 812 456 660 364 148 +150(.6) 710.73 +30(.4) -550 NPV= ? NPV=444.55 Turboprop *450 -150 NPV=550.00 +100(.6) 403.82 +50(.4) or 0 331 -250 NPV= ? NPV=184.55 Piston
Decision Trees 960 (.8) 220(.2) 930(.4) 140(.6) 800(.8) 100(.2) 410(.8) 180(.2) 220(.4) 100(.6) NPV=888.18 812 456 660 364 148 +150(.6) 710.73 +30(.4) Turboprop -550 NPV=96.12 NPV=444.55 *450 -150 NPV=550.00 +100(.6) 403.82 +50(.4) or Piston 0 331 -250 NPV=117.00 NPV=184.55
Decision Trees 960 (.8) 220(.2) 930(.4) 140(.6) 800(.8) 100(.2) 410(.8) 180(.2) 220(.4) 100(.6) NPV=888.18 812 456 660 364 148 +150(.6) 710.73 +30(.4) Turboprop -550 NPV=96.12 NPV=444.55 *450 -150 NPV=550.00 +100(.6) 403.82 +50(.4) or Piston 0 331 -250 NPV=117.00 NPV=184.55
Preparation for Next Class • Please read: • BM Chapter 11 , P291-308