210 likes | 292 Views
Obmedzenia MSSM z SO(10) zjednotenej teórie a implikácia pre kolajdre. Tomáš Blažek Univerzita Komenského, Bratislava. SK-CZ Atlas workshop, Košice, 5. marec 2009. Contents. Why SO(10) Main Experimental Constraints and Their Effects
E N D
Obmedzenia MSSM z SO(10) zjednotenej teórie a implikácia pre kolajdre Tomáš Blažek Univerzita Komenského, Bratislava SK-CZ Atlas workshop, Košice, 5. marec 2009
Contents • Why SO(10) • Main Experimental Constraints and Their Effects • Examples of Best Fits from the Global Top-Down Analysis • Implications for SUSY searches
Well-Known SO(10) Virtues • SM fermionic multiplets of one family (15 Weyl fermions) × 3 colours + fit nicely into the 16 of SO(10): • the 16 is a chiral rep -> mass term M 1616 is not allowed by S0(10) gauge symmetry-> the 16 is massless if SO(10) is exact • anomaly canceled automatically, since SO(10) is anomaly free, unlike SU(3)c×SU(2)L×U(1)Y or SU(5) • the extra 16th state right-handed neutrino quantum numbers, not protected against geting massive below MGUT setting stage for the L number violation and see-saw mechanism after EWSB • Similarly the two Higgs doublets fit into a massless 10 • Gauge couplings unify
Trojuholníková anomália kalibračná symetria SM je pokazená (narušená) procesmi, ktoré obsahujú diagram Vρb Vρb + Vμa Vμa Vμa = Bμ, Wμa, aleboGμa Vσc Vσc Symetriu možno zachrániť iba ak ∑ Tr{ TaTbTc} + Tr{ TaTcTb} = 0 fermióny Príklad: nech sú všetky tri bozóny hypernábojové B-éčka. Potom Ta = yf1. Tieto komutujú, ľavá strana je preto ∑ 2(yf)3 fermióny Hodnoty yf =2(Q-T3) pre ec,L,dc,uc,Q sú 2,-1,2/3,-4/3,1/3. Suma z (yf)3je 23+2(-1)3+3(2/3)3+3(-4/3)3+2·3(1/3)3 = 0
Veľké zjednotenie v Minimálnom supersymetrickom štandardnom modeli: zbiehanie väzbových konštánt (nábojov) pri veľkej prenesenej hybnosti Tieto hodnotyα1, α2 a α3≡αs sú vypočítané z experimentálne nameraných veličín pri energií 100 GeV αS V poruchovej teórii vieme z kvantových slučkových procesov vypočítať sklon kriviekα1, α2 a α3. Sklon závisí od častíc v slučkách: ak vynecháme SUSY častice, krivky sa nepretnú. αS(MZ)=0.118 α2(MZ)=0.036 α2 α1 α1(MZ)=0.010 α |q| q = prenesená hybnosť α (|q|→0) = 1/137 = 0.0073 α(MZ) = 1/128 = 0.0078 100 GeV 1016 GeV
Well-Known SO(10) Virtues cont’d • The 16310163 operator gives order one yukawa coupling: • get a heavy top quark • EW symmetry broken radiatively (for universal scalar masses) • prediction • yt ≈ yb ≈ ytau ≈ yνtau • includes successful idea of b-tau unification • The see-saw mechanism then predicts about the right hierarchy between the charged fermions and much lighter neutrinos • ... and there is more that is less well-known and is coming in this talk
SO(10) Troubles • proton decaying too rarely (unobserved, in fact) ... dim 5 operator due to the coloured triplet higgs vs. the sign of the MGUT correction to αs • The 16310163 operator gives order one yukawa coupling: • Prediction • yt ≈ yb • implies large amount of fine tuning at EWSB scale: must get vd≈3GeV, as mt(MZ)/mb(MZ)≈50, • i.e., need large tanβ • Moreover, scalar higgs masses run very steep – Fig. • Since mc/mt« ms/mb, mmu/mtau and also • mu/mc« md/ms, • different higher-dimensional operators generate fermion masses of the two lighter generations • UV completion ?
SO(10) studies • Approach 1: study a particular model, which can be more or less complete, generating higher dimensional operators, and filling in the 3×3 yukawa matrices at MGUT by reading out the individual entries from the Frogatt-Nielsen diagrams OR • Approach 2: be less specific and study „SO(10)-like models“ in an MSSM analysis below MGUT which just takes into account the large yukawa couplings of the third generation
SO(10) studies Approach 1: Implemented in • and a number of follow-up papers. • Strategy: Do pure top-down global analysis evaluating χ2from the comparison with the available low energy data. See Table. • Important details: • Include GUT threshold correction to αs • Gravity mediated SUSY breaking with non-universal scalar higgs masses • Face fine tuning with an embedded minimisation procedure, separately minimising χ2using the non-universal higgs masses for each set of the GUT parameters
Table of Low Energy Observables MSSM analysis only
BR(b sγ) Constraint Effective Hamiltonian: ~ where η= αs(MZ) / αs(μ) Contributions to C7(MZ): chargino diagram enhanced by tanβ picks up the sign of the μ parameter SUSY CKM contrib non-negligible C7 or T.B. + S.Raby: b --> s gamma with large tan .BETA. in a MSSM analysis constrained by a realistic SO(10) model Phys Rev D, 59 (1999) 095002
mb(mb) Constraint Large SUSY Threshold Contributions to mb(MZ): • both diagrams enhanced by tanβ and proportional to μ • must be of opposite signs: need negative At • still potentially too large: pushes μ to low values ... get low mass higgsino-like charginos and neutralinos • for the same reason the global analysis best fits prefer heavy gluino. That means rather large M1/2 which through the RGEs feeds into large scalar masses.
Constraint from the muon anomalous magn moment SUSY Contributions to aμ: • no freedom to choose the sign: could have gone the opposite way than the BNL measurement, but it has not • the low value of μ and heavy scalar masses tend to prefer lesser contribution than what is measured in the e+e- exp. • If the result stays, it could be a hint for a non-universal SUSY breaking mechanism. • both diagrams enhanced by tanβ and proportional to μ, chargino contribution typically greater T.B. + S.F.King : Muon anomalous magnetic moment and .TAU.-->.MU.GAMMA. in a realistic string-inspired model of neutrino masses Phys. Lett B. 518, (2001), 109
Constraint from non-observation of Bs to μ+μ- There are SUSY contributions to this decay amplitude that are enhanced by (tanβ)3. These contributions are mediated by the pseudoscalar higgs exchange -> sensitivity to its mass: • need pseudoscalar higgs mass typically greater than 300 GeV T.B., S.F.King, J.Parry: Implications of B_s -->.MU.+.MU.- in SO(10)-like models Physics Letters B. - Vol. 589, (2004), 39
Examples of Global Analysis Best Fits T.B., R.Dermíšek, S.Raby: Predictions for Higgs and supersymmetry spectra from SO(10)Yukawa unification with .MU. > 0 Physical Review Letters. - Vol. 88, (2002), 111804
Implications from the SO(10)-like models best fits • the lightest CP even higgs very close to the current limit mh ≈ 115-120 GeV • the rest of the higgs spectrum above ≈ 250-300 GeV • light higgsino-like charginos and neutralinos close to 100 GeV, the LSP is most of the times a higgsino-like neutralino • possibly a light stop and stau (and maybe sbottom) due to the large left-right splittings • the rest of the MSSM sparticle spectrum at/above the TeV scale • CDM is formed by a mixture of bino/higgsino-like neutralino LSP and should be observed in the near future, or the LSP is higgsino-like LSP that annihilates too rapidly to form the dominant CDM component