1 / 19

process modelling

heat transfer calculation

nh_aus
Download Presentation

process modelling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NURULAFIFAHBINTIMOHDYUSOFF 2013275464 EH1104A FACULTYOFCHEMICALENGINEERING

  2. TheLogMeanTemperature DifferenceMethod(LMTD) TheLogarithmicMeanTemperatureDifference(LMTD)is validonlyforheatexchangerwithoneshellpassandone tubepass. Formultiplenumberofshellandtubepassestheflow patterninaheatexchangerisneitherpurelyco-currentnor purelycounter-current. Thetemperaturedifferencebetweenthehotandcoldfluidsvaries alongtheheatexchanger. ItisconvenienttohaveameantemperaturedifferenceTmforuse intherelation. QUAsTm

  3. Themeantemperaturedifferenceinaheattransfer processdependsonthedirectionoffluidflowsinvolved intheprocess.Theprimaryandsecondaryfluidinan heatexchangerprocessmay flowinthesamedirection-parallelfloworcocurrent flow intheoppositedirection-countercurrentflowor perpendiculartoeachother-crossflow

  4. T2 T1 T2 T1 TLn Co-currentflow ln  T10 1 2 T2 T1 T4 T5 T6 T3 T9 T8 ∆T1 T7 ParallelFlow ∆T2 T1TTT3T7 inin hc T2ThoutTcoutT6T10 A

  5. Counter-currentflow T10 1 2 T2 T1 T4 T5 T3 T1 T4 T6 T3 T6 T6 Wall T2 T7 T9 T8 T7 T8 Counter-CurrentFlow T9 T10 T1TT T3T7 inout hc A outin hc

  6. LMTDCounter-FlowHX T2T1 ln(T2/T1) QUATLM TLM WhereforCounterFlow: T1Th,1Tc,1Th,iTc,o T2Th,2Tc,2Th,oTc,i Tlm,CF>Tlm,PFFORSAMEU:ACF<APF

  7. LMTD-Multi-PassandCross-Flow ApplyacorrectionfactortoobtainLMTD QUATLM TLMFTLM,CF t:TubeSide

  8. LMTDParallel-FlowHX T2T1 ln(T2/T1)  QUATLM TLM WhereforParallelFlow: T1Th,1Tc,1Th,iTc,i T2Th,2Tc,2Th,oTc,o

  9. Inamulti-passexchanger,inadditiontofrictionallossthehead lossknownasreturnlosshastobetakenintoaccount. Thepressuredropowingtothereturnlossisgivenby- Where, n=thenumberoftubepasses V=linearvelocityofthetubefluid Thetotaltube-sidepressuredropis ∆PT=∆Pt+∆Pr

  10. THEEFFECTIVENESS-NTUMETHOD LMTDmethodisusefulfordeterminingtheoverallheat transfercoefficientUbasedonexperimentalvaluesofthe inletandoutlettemperaturesandthefluidflowrates.     Amoreconvenientmethodforpredictingtheoutlet temperaturesistheeffectivenessNTUmethod. ThismethodcanbederivedfromtheLMTDmethod withoutintroducinganyadditionalassumptions. Therefore,theeffectiveness-NTUandLMTDmethodsare equivalent. Anadvantageoftheeffectiveness-NTUmethodisitsability topredicttheoutlettemperatureswithoutresortingtoa numericaliterativesolutionofasystemofnonlinear equations.Theheat-exchangereffectivenessεisdefinedas

  11. •Heatexchangereffectiveness, : q qmax  01 •Maximumpossibleheatrate: qmaxCminTh,iTc,i ifCC Chhc or  Cmin WillthefluidcharacterizedbyCminorCmaxexperiencethelargestpossible temperaturechangeintransitthroughtheHX? WhyisCminandnotCmaxusedinthedefinitionofqmax?

  12. •NumberofTransferUnits,NTU UA Cmin NTU AdimensionlessparameterwhosemagnitudeinfluencesHXperformance: qwithNTU

  13. HeatExchangerRelations    or     or   qmhih,ihi,o   qChTh,iTh,o  qCcTc,oTc,i •PerformanceCalculations: fNTU,Cmin/Cmax Cr RelationsTable11.3orFigs.11.14-11.19 • qmcic,oci,i  qCminTh,iTc,i

  14. •DesignCalculations: NTUf,Cmin/Cmax RelationsTable11.4orFigs.11.14-11.19 •Forallheatexchangers, withCr •ForCr=0,asingleNTUrelationappliestoallHXtypes. 1expNTU or NTU1n1

  15. References http://www.engineeringtoolbox.com/arithmetic-logarithmic- mean-temperature-d_436.html http://www-old.me.gatech.edu/energy/laura/node5.html http://www.che.ufl.edu/unit-ops-lab/experiments/HE/HE- theory.pdf http://web.iitd.ac.in/~prabal/MEL242/(30-31)-Heat-exchanger- part-2.pdf

More Related