170 likes | 513 Views
Matrix representation of Spin Operator. J. I kz I l z. 2 I ky I l z. I kx. x. x. t 2. t 1. Correlation Spectroscopy (COSY). Considering two spin k and l. y. ϕ R. -y. y. y. y. t 2. I. y. ϕ 1. ϕ 2. y. S. F. A. B. C. D. E.
E N D
J.IkzIlz 2IkyIlz Ikx
x x t2 t1 Correlation Spectroscopy (COSY) Considering two spin k and l
y ϕR -y y y y t2 I y ϕ1 ϕ2 y S F A B C D E Heteronuclear Single Quantum Correlation Spectroscopy (HSQC) ϕ1= x, -x, x, –x ϕ2= x, x, -x, –x ϕR= x, -x, -x, x
I S Heteronuclear Single Quantum Correlation Spectroscopy (HSQC) y y A B
Heteronuclear Single Quantum Correlation Spectroscopy (HSQC) -y y y y I y ϕ1 ϕ2 S A B C D E ϕ2= x, x, -x, –x ϕ1= x, -x, x, –x
-y y y y I y ϕ1 ϕ2 S A B C D E Heteronuclear Single Quantum Correlation Spectroscopy (HSQC) y y F
y -y y y y I y ϕ1 ϕ2 y S F A B C D E Heteronuclear Single Quantum Correlation Spectroscopy (HSQC) ϕR t2 ϕ1= x, -x, x, –x ϕ2= x, x, -x, –x ϕR= x, -x, -x, x
y ϕR -y y y y t2 I y ϕ1 ϕ2 y S F A B C D E Heteronuclear Single Quantum Correlation Spectroscopy (HSQC) For protons NOT coupled to S spin We need two step phase cycle to get rid of this magnetization ϕ1= x, -x ϕR= x, -x
y ϕR -y y y y t2 I y ϕ1 ϕ2 y S F A B C D E Heteronuclear Single Quantum Correlation Spectroscopy (HSQC) For complete removal of multiple quantum term we need four step phase cycle to get rid of this magnetization ϕ1= x, -x, x, -x ϕ1= x, x, -x, -xϕR= x, -x, -x, x
Sensitive enhanced Heteronuclear Single Quantum Correlation Spectroscopy (SE-HSQC) y y y -y -y y y y ϕR t2 I y ϕ1 ϕ2 y y ϕ3 S A ϕ3= y, -y, y, –y
SE- Heteronuclear Single Quantum Correlation Spectroscopy (SE-HSQC) y y y -y -y y y y ϕR t2 I y ϕ1 ϕ2 y y ϕ3 S B C D A ϕ3= y, -y, y, –y
SE- Heteronuclear Single Quantum Correlation Spectroscopy (SE-HSQC) y y y -y -y y y y ϕR t2 I y ϕ1 ϕ2 y y ϕ3 S B C D A ϕ3= y, -y, y, –y