1 / 48

Subthreshold K + production and the nuclear equation-of-state

This study investigates subthreshold K+ production and its implications for the equation-of-state of symmetric nuclear matter. It explores the in-medium properties of Kaons and their production in nucleus-nucleus collisions. The findings are compared with transport model calculations to identify a robust observable.

nicoletti
Download Presentation

Subthreshold K + production and the nuclear equation-of-state

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Subthreshold K+ production and the nuclear equation-of-state Christian Sturm Johann Wolfgang Goethe-Universität Frankfurt NUCLEAR MATTER IN HIGH DENSITY Hirschegg 2009

  2. α α 90Zr The compression modulus of nuclear matter at saturation density ρ0: Excitation of the giant monopole resonance Youngblood et al. , Phys. Rev. Lett. 82 (1999)691 inelastic scattering of α particles on nuclei measure of the total energy of the outgoing α particle → Ex Ekin = 240 MeV "resonance phenomenon" The energy loss of the α particle of about 15 – 25 MeV excites slight density oscillations with elongations of about 1/100 ρ0 (around saturation density ρ0 ). It is a collective excitation of the nucleus and calls the Giant Monopole Resonance or the "breathing mode" of nuclei. From the measured excitation energy distribution Ex : → frequency → restoring force (potential) of the oscillation → "spring constant" κ = compressionmodulus Christian Sturm

  3. The compression modulus of nuclear matter at saturation density ρ0: Excitation of the giant monopole resonance "Excitation of the Giant Monopole Resonance by inelastic scattering of α particles on nuclei" Youngblood et al. , Phys. Rev. Lett. 82 (1999)691 κ = 231 ± 5 MeV Christian Sturm

  4. nucleons resonances mesons t ≈ 10-22 s To investigate high baryon densities in the laboratory: Relativistic Heavy Ion Collisions Au + Au QMD , S. Bass , Uni. Frankfurt high density phase 1.5 GeV/nucleon transport models:ρmax≅ 3ρ0 • high density and temperature on a very short time scale • thermodynamical equilibrium not necessarily achieved Christian Sturm

  5. Au +Au 1.5 AGeV UrQMD Christian Sturm

  6. NN → NΔ πN πN → K+Λ multi step processes: i.e. ≈ 10 fm/c 30 10 20 t [fm/c] The case of moderate beam energies • Particle production at or below threshold : • co-operative processes • (i.e. multi step processes) • production confined to the • high density phase ! Enhancement of baryon density : Dt (r/r0 > 2) ≈ 10 fm/c → comparatively long life-time at moderate densities ! Christian Sturm

  7. FOPI: Light vector mesons at SIS18: Dilepton spectroscopy with HADES Christian Sturm

  8. The Kaonspectrometerdedicated to identify rare Kaon events Kaons are rare at these energy regime: Christian Sturm

  9. Subthreshold K+ production in nucleus-nucleus collisionsand the equation-of-state of symmetric nuclear matter Why are Kaons at SIS energies well suited to probe the nuclear equation-of-state ? brief survey Important for transport models: what are the experimental findings according the in-medium properties of Kaons ? What is the conclusion of the subthreshold K+ production in comparison with transport model calculations ? Could we identify a robust observable ? Christian Sturm

  10. u d u u d s p L u d d u d d n s u n K+ s u K+ s u u d u K- p u d u d d u d d u p n n Associated production of strange mesons in elementary nucleon-nucleon reactions Kaons Antikaons production threshold in NN collisions : production threshold in NN collisions : Christian Sturm

  11. “Subthreshold” K+ production e.g. (Y=Λ,Σ) multi step processes ! Au + Au 1 GeV / nucleon : Kaons are predominantly produced during the high density phase of the collision! central collisions peripheral M: multiplicity = number / per collision Apart : number of participating nucleons Additional channels in nucleus-nucleus collisions Christian Sturm

  12. Final state interaction mean free path at ρ0: • K+ • no absorption • only elastic scattering Christian Sturm

  13. L(1405) K- K- N-1 In-medium modification of Kaons and Antikaons in dense nuclear matter G.E Brown, C.H. Lee, M. Rho, V. Thorsson, Nucl. Phys. A 567 (1994) 937 T. Waas, N. Kaiser, W. Weise, Phys. Lett. B 379 (1996) 34 J. Schaffner-Bielich, J. Bondorf, I. Mishustin , Nucl. Phys. A 625 (1997) self-consistent coupled channel calculation with mean field (s,p,d waves) Christian Sturm

  14. In-medium modification of Kaons and Antikaons (envelope of several microscopic calculations: all predict the same trend !) repulsive K+ N potential attractive K- N potential This should effect: production→ yield propagation→ angular distributions Christian Sturm

  15. In-medium modifications of K+ mesons Data: M. Menzel et al., (KaoS Collab.), Phys. Lett. B 495 (2000) 26 K. Wisniewski et al., ( FOPI Collab.), Eur. Phys. J A 9 (2000) 515 Reduced K+ yield due to increased in-medium K+ mass Christian Sturm

  16. K+ azimuthal emission pattern from A+A collisions Data: Y. Shin et al., (KaoS Collaboration), Phys. Rev. Lett. 81 (1998) 1576 F. Uhlig et al., (KaoS Collaboration), Phys. Rev. Lett. 95 (2005) 012301 Calculations see A. Larionov, U. Mosel, nucl-th/0504023 Evidence for a repulsive K+N interaction ! Christian Sturm

  17. 69% , cτ ≈ 2.7 cm 68% , cτ ≈ 15.5 m K0 production in Ar + KCl reactions Ar + KCl 1.756 GeV / nucleon 50% K0S , 50% K0L invariant mass : Christian Sturm

  18. K0 production in Ar + KCl reactions Ar + KCl 1.756 GeV / nucleon repulsive Kaon-Nucleon Potential : IQMD calculation by C. Hartnack, J. Aichelin transverse mass Christian Sturm

  19. Strangeness production in proton - nucleus collisions Search for in-medium effects at saturation density ! p + C  K+ + X (1.6, 2.5, 3.5 GeV) p + C  K- + X (2.5, 3.5 GeV) p + Au  K+ + X (1.6, 2.5, 3.5 GeV) p + Au  K- + X (2.5, 3.5 GeV) W. Scheinast et al., (KaoS Collaboration) Phys. Rev. Lett. 96 (2006) 072301 Christian Sturm

  20. In-medium KN potentials used: Kaon and Antikaon in-medium potentials at ρ0 ratio: Transport calculation: H. W. Barz et al., Phys.Rev. C68 (2003) 041901 contributing channels: p + N → K++  p + N → N + N + K+ + K-  + N  N + N + K- Christian Sturm

  21. K+ and K- azimuthal angular distributions in Au + Au collisions 1.5 GeV / nucleon fit: semi-central collisions (b > 6.4 fm) M. Płoskon, PhD Thesis 2005 Christian Sturm

  22. Elliptic flow of K+ and K- mesons: Comparison to off-shell transport calculations and in-medium spectral functions Data: M. Płoskon, PhD Thesis, Univ. Frankfurt 2005 Off-shell transport calculations: W. Cassing et al., NPA 727 (2003) 59, E. Bratkovskaya, priv. com. Coupled channel G-Matrix approach (K- spectral functions): L. Tolos et al., NPA 690 (2001) 547 not yet conclusive ! Christian Sturm

  23. Conclusion In-medium modification of Kaons and Antikaons Yield and elliptic flow of Kaons in A+A collisions: The in-medium Kaon-Nucleon potential is repulsive Yield of Kaons and Antikaons in proton-nucleus collisions:  in-medium K-N potential VK-N = - 8020/0 MeV in-medium K+N potential VK+N = 255/0 MeV Yield and elliptic flow of Antikaons in A+A collisions: Quantitative interpretation of data requires off-shell transport calculations (dealing with spectral functions !) Christian Sturm

  24. nuclear equation-of-state at T = 0 : "compressional" energy stiff EoS soft EoS α [MeV] β [MeV] γ κ = 380 MeV -124 70.5 2 κ = 200 MeV -356 303 7/6 The equation-of-state of (symmetric) nuclear matter effective NN-Potential (Skyrme) Compression Modulus : Christian Sturm

  25. Probability of multi step processes increases nonlinearly with the baryon density IQMD: Au+Au 1AGeV stiff EoS ρmax / ρ0≅ 2.7 soft EoS ρmax / ρ0≅ 3.1 "Subthreshold" K+ production linked to the nuclear equation-of-state production threshold: Elab= 1.58 GeV “Subthreshold” K+ mesons predominantly produced bycollective effects → multi step processes e.g. (Y=Λ,Σ) Christian Sturm

  26. IQMD C. Hartnack What could be a sensitive observable ? Idea: measure K+ production in Au+Au and C+C collisions ! The light collision system serves as a “reference” system because there is almost no compression expected ! Christian Sturm

  27. K+ production in Au+Au and C+C collisions Christian Sturm

  28. Production excitation functions in Au+Au and C+C collisions C. Sturm et al., Phys. Rev. Lett. 86 (2001) 39 enhanced K+ production in Au+Au reactions Christian Sturm

  29. soft nuclear equation-of-state: κ≈ 200 MeV The compression modulus of nuclear matter at ρ = 2 - 3 ρ0 Experiment: C. Sturm et al., Phys. Rev. Lett. 86 (2001) 39 Theory: RQMD C. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974 Christian Sturm

  30. IQMD C. Hartnack, J. Aichelin The compression modulus of nuclear matter at ρ = 2 - 3 ρ0 Experiment: C. Sturm et al., Phys. Rev. Lett. 86 (2001) 39 Theory: RQMD C. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974 IQMD C. Hartnack, J. Aichelin Christian Sturm

  31. Robust observable ? Variation of: IQMD IQMD C. Hartnack, J. Aichelin cross sections in-medium KN potentials conclusion: calculations using a potential according to a “soft” nuclear equation-of-state describe the data at best ! Δ lifetime Christian Sturm

  32. The equation-of-state of (symmetric) nuclear matter C. Fuchs, Prog. Part. Nucl. Phys. 56 (2006) 1 Christian Sturm

  33. Conclusion Nuclear equation-of-state ρ≈ 1 ρ0 Excitation of the giant monopole resonance in inelastic α-nucleus collisions  The compression modulus of nuclear matter K = 231± 5 MeV ρ≈ 2–3 ρ0 Double ratio of the K+ production excitation functions in Au+Au and C+C  Robust observable  The nuclear matter equation-of-state is soft ( K  200 MeV) Christian Sturm

  34. additional slides ... Christian Sturm

  35. Probing the nuclear equation-of-state: proton collective flow P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592 Transverse in-plane flow: Elliptic flow: F = d(px/A)/d(y/ycm) dN/dF  (1 + 2v1cosF + 2v2 cos2F) Christian Sturm

  36. Θlab= 60o K+ 48o 40o 71o 32o Acceptances Au+Au 1.5GeV Christian Sturm

  37. Θlab= K+ 60o 48o 71o 40o 32o The Kaon Spectrometer •  = 15 – 35 msr • p/p  2 • lab: 0 – 115 ToF-2 ToF-1 • compact size: path length 5 – 7.5 m • Kaon Trigger (ToF + Cherenkov) • efficient background reduction by 2xToF measurement Christian Sturm

  38. fit: Spectral distributions from A+A (Θcm≈90º) (w/o selection of impact parameter) Christian Sturm

  39.  5% σr  15% σr  15% σr  25% σr  40% σr central peripheral Spectral distributions as a function of the centrality Ni+Ni, 1.93AGeV Au+Au, 1.5AGeV A. Förster et al. PRL 91(2003)152301 F.Uhlig PhD Thesis,TU Darmstadt Christian Sturm

  40. Spectral distributions as a function of the centrality 1.5AGeV Au+Au, 1.5AGeV central 5% σr 15% σr 15% σr 25% σr 40% σr peripheral Christian Sturm

  41. Spectral distributions of Pions Au + Au , 1.5AGeV Christian Sturm

  42. out off planeemission semi central collisions out off plane emission Azimuthal particle emission mid rapidity p,d,t,α Fourier expansion of the dN/dϕdistribution: • the coefficients quantify : • v1 the in-plane and • v2 the elliptic emission pattern Christian Sturm

  43. Directed flow of protons and fragments and the nuclear equation-of-state A. Andronic et. al. Phys. Rev. C 67 (2003) 034907 Au + Au , 400 AMeV , M4 Fourier coefficient v1 : directed flow (in-plane) best description of Au and Xe data at 400AMeVwith a soft EoS + MDI transport calculation (IQMD) by C. Hartnack Christian Sturm

  44. semi central collisions Pions are enhanced emitted perpendicular to the reaction plane. What would you expect how the K+ emission pattern look like ? Azimuthal particle emission out-of-plane Bi+Bi 0.7AGeV, semi central π+ D. Brill et al. ZPA355 (1996) 61 ZPA357 (1997) 207 Christian Sturm

  45. -1.2  y0  -0.5 P. Crochet et al., Phys. Lett. B 486 (2000) 6 RBUU: E. Bratkovskaya , W. Cassing K+ sideward flow reaction plane K+ top view p K+-Mesons show an “antiflow" – caused by a repulsive K+N potential Christian Sturm

  46. L(1405) K- K- N-1 The in-medium spectral function of Antikaons Coupled channels calculation M. Lutz GSI resonant state close to the K-N threshold: Λ(1405) Christian Sturm

  47. Parameterizations: A. Sibirtsev, W. Cassing, C.M. Ko, ZPA 258 (1997) 101 F. Laue, C. Sturm et al. PRL 82 (1999) 1640 M. Menzel et al. PLB 495 (2000) 26 K-/ K+≪ 1 F. Laue, C. Sturm et al. PRL 82 (1999) 1640 M. Menzel et al. PLB 495 (2000) 26 dropping K- mass ? K+ and K- production in p+p and A+A collisions Christian Sturm

  48. ρ/ρ0 PK Nb + Nb , 0.7 AGeV soft EoS stiff EoS t [fm/c] Christian Sturm

More Related