1 / 36

Lecture 08 - ASTC25 Elements of Celestial Mechanics Part 2 INTEGRALS OF MOTION 1. Energy methods (integrals of mo

Lecture 08 - ASTC25 Elements of Celestial Mechanics Part 2 INTEGRALS OF MOTION 1. Energy methods (integrals of motion) 2. Zero Vel. Surfaces (Curves) and the concept of Roche lobe 3. Roche lobe radius calculation 4. Lagrange points and their stability

nira
Download Presentation

Lecture 08 - ASTC25 Elements of Celestial Mechanics Part 2 INTEGRALS OF MOTION 1. Energy methods (integrals of mo

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 08 - ASTC25 Elements of Celestial Mechanics Part 2 INTEGRALS OF MOTION 1. Energy methods (integrals of motion) 2. Zero Vel. Surfaces (Curves) and the concept of Roche lobe 3. Roche lobe radius calculation 4. Lagrange points and their stability 5. Hill problem and Hill stability of orbits 6. Resonances and stability of the Solar System

  2. Non-perturbative methods (energy constraints, integrals of motion) Karl Gustav Jacob Jacobi (1804-1851)

  3. Solar sail problem again A standard trick to obtain energy integral

  4. Energy criterion guarantees that a particle cannot cross the Zero Velocity Curve (or surface), and therefore is stable in the Jacobi sense (energetically). However, remember that this is particular definition of stability which allows the particle to physically collide with the massive body or bodies -- only the escape from the allowed region is forbidden! In our case, substituting v=0 into Jacobi constant, we obtain:

  5. Allowed regions of motion in solar wind (hatched) lie within the Zero Velocity Curve f=0 f=0.051 < (1/16) particle cannot escape from the planet located at (0,0) f=0.063 > (1/16) f=0.125 particle can (but doesn’t always do!) escape from the planet (cf. numerical cases B and C, where f=0.134, and 0.2, much above the limit of f=1/16).

  6. Circular Restricted 3-Body Problem (R3B) L4 L1 L3 L2 Joseph-Louis Lagrange (1736-1813) [born: Giuseppe Lodovico Lagrangia] L5 “Restricted” because the gravity of particle moving around the two massive bodies is neglected (so it’s a 2-Body problem plus 1 massless particle, not shown in the figure.) Furthermore, a circular motion of two massive bodies is assumed. General 3-body problem has no known closed-form (analytical) solution.

  7. NOTES: The derivation of energy (Jacobi) integral in R3B does not differ significantly from the analogous derivation of energy conservation law in the inertial frame, e.g., we also form the dot product of the equations of motion with velocity and convert the l.h.s. to full time derivative of specific kinetic energy. On the r.h.s., however, we now have two additional accelerations (Coriolis and centrifugal terms) due to frame rotation (non-inertial, accelerated frame). However, the dot product of velocity and the Coriolis term, itself a vector perpendicular to velocity, vanishes. The centrifugal term can be written as a gradient of a ‘centrifugal potential’ -(1/2)n^2 r^2, which added to the usual sum of -1/r gravitational potentials of two bodies, forms an effective potential Phi_eff. Notice that, for historical reasons, the effective R3B potential is defined as positive, that is, Phi_eff is the sum of two +1/r terms and +(n^2/2)r^2

  8. Effective potential in R3B mass ratio = 0.2 The effective potential of R3B is defined as negative of the usual Jacobi energy integral. The gravitational potential wells around the two bodies thus appear as chimneys.

  9. Lagrange points L1…L5 are equilibrium points in the circular R3B problem, which is formulated in the frame corotating with the binary system. Acceleration and velocity both equal 0 there. They are found at zero-gradient points of the effective potential of R3B. Two of them are triangular points (extrema of potential). Three co-linear Lagrange points are saddle points of potential.

  10. Jacobi integral and the topology of Zero Velocity Curves in R3B rL = Roche lobe radius + Lagrange points

  11. Sequence of allowed regions of motion (hatched) for particles starting with different C values (essentially, Jacobi constant ~ energy in corotating frame) High C (e.g., particle starts close to one of the massive bodies) Highest C Low C (for instance, due to high init. velocity) Notice a curious fact: regions near L4 & L5 are forbidden. These are potential maxima (taking a physical, negative gravity potential sign) Medium C

  12. = 0.1 C = R3B Jacobi constant with v=0 Édouard Roche (1820–1883), Roche lobes terminology: Roche lobe ~ Hill sphere ~ sphere of influence (not really a sphere)

  13. Stability around the L-points

  14. Is the motion around Lagrange points stable? Stability of motion near L-points can be studied in the 1st order perturbation theory (with unperturbed motion being state of rest at equilibrium point).

  15. Stability of Lagrange points Although the L1, L2, and L3points are nominally unstable, it turns out that it is possible to find stable and nearly-stable periodic orbits around these points in the R3B problem. They are used in the Sun-Earth and Earth-Moon systems for space missions parked in the vicinity of these L-points. By contrast, despite being the maxima of effective potential, L4 and L5 are stable equilibria, provided M1/M2 is > 24.96 (as in Sun-Earth, Sun-Jupiter, and Earth-Moon cases). When a body at these points is perturbed, it moves away from the point, but the Coriolis force then bends the trajectory into a stable orbit around the point.

  16. Observational proof of the stability of triangular equilibrium points Greeks, L4 Trojans, L5 From: Solar System Dynamics, C.D. Murray and S.F.Dermott, CUP

  17. Roche lobe radius depends weakly on R3B mass parameter = 0.1 = 0.01

  18. Computation of Roche lobe radius from R3B equations of motion ( , a = semi-major axis of the binary) L

  19. Roche lobe radius depends weakly on R3B mass parameter m2/M = 0.01 (Earth ~Moon) r_L = 0.15 a m2/M = 0.003 (Sun- 3xJupiter) r_L = 0.10 a m2/M = 0.001 (Sun-Jupiter) r_L = 0.07 a m2/M = 0.000003 (Sun-Earth) r_L = 0.01 a = 0.1 = 0.01

  20. Hill problem George W. Hill (1838-1914) - studied the small mass ratio limit of in the R3B, now called the Hill problem. He ‘straightened’ the azimuthal coordinate by replacing it with a local Cartesian coordinate y, and replaced r with x. L1 and L2 points became equidistant from the planet. Other L points actually disappeared, but that’s natural since they are not local (Hill’s equations are simpler than R3B ones, but are good approximations to R3B only locally!) Roche lobe ~ Hill sphere ~ sphere of influence(not really a sphere, though)

  21. Hill problem Hill applied his equations to the Sun-Earth-Moon problem, showing that the Moon’s Jacobi constant C=3.0012 is larger than CL=3.0009 (value of effective potential at the L-point), which means that its Zero Velocity Surface lies inside its Hill sphere and no escape from the Earth is possible: the Moon is Hill-stable. However, this is not a strict proof of Moon’s eternal stability because: (1) circular orbit of the Earth was assumed (crucial for constancy of Jacobi’s C) (2) Moon was approximated as a massless body, like in R3B. (3) Energy constraints can never exclude the possibility of Moon-Earth collision

  22. COMPARISON OF THEORIES From the example of Sun-Earth-Moon system we find that: integrals of motion guarantee no-escape from the allowed regions of motion for an infinite period of time, which is better than either the general or the special perturbation theory can do but only if the assumptions of the theory are satisfied, and that’s difficult to achieve in practice we are usually only interested in time periods up to Hubble time. In late 1990s our computers and algorithms became capable of simulating such enormous time spans. Numerical exploration has supplanted the elegant 18th-century methods as the preferred tool of dynamicists trying to ascertain the stability of the Solar System and its exo-cousins. (Laplace’s and Lagrange’s analytical methods were OK in their time, when the biblical age of the Sun/Earth of 4000 yr was accepted). So….

  23. Is the Solar System orbitally stable?… Yes, it appears so (for billions of years), but we cannot be absolutely sure!

  24. Is the Solar System orbitally stable?… No certainty, now or ever. The reason is that, like the weather on Earth, the detailed configuration of the planets after 1 Gyr, or even 100 mln yrs is impossible to predict or compute. On Earth, this is because of chaos in weather systems (super- sensistivity to initial conditions, too many coupled variables) In planetary systems, chaos is due to planet-planet gravitational perturbations amplified by resonances. Two or more overlapping (weakened unexpectedly fast) resonances can make the precise predictions of the future futile. ? Hurricane Rita, Sept. 23, 2005

  25. Chaos in: rotation oscillation Double pendulum Lorentz attractor (modeled after weather system equations)

  26. In the Solar System, resonant angles librate (oscillate) in 2-body resonances

  27. Strong, non-chaotic resonances in satellite systems Also planets exhibit such low-order commensurabilities, the most famous being perhaps the 2:5 Saturn-Jupiter one. (2:3 Pluto-Neptune resonance does not prevent chaotic nature of Pluto’s orbit.)

  28. Example of chaotic orbits due to overlapping resonances

  29. Orbits and planet positions are unpredictable on a timescale of 100 mln yrs or less (50 mln yrs for Earth). For instance, let the longitudes of perihelia be denoted by w and the ascending nodes as W, then using subscripts E and M for Earth and Mars, there exists a resonant angle fME = 2(wM -wE) - (WM -WE) that shows the same hesitating behavior between oscillation (libration) and circulation (when resonant lock is broken) as in a double pendulum experiment. But chaos in our system is stable for the time ~ its age Orbits have the numerical, long-term, stability. They don’t cross and planets don’t exchange places or get ejected into Galaxy. The only questionable stability case is that of Mercury & Sun. Mercury makes such wide excursions in orbital elements, that in some simulations it drops onto the Sun in 3-10 Gyr.

  30. How wide a region is destabilized by a planet?

  31. Hill stability of circumstellar motion near the planet C CL The gravitational influence of a small body (a planet around a star, for instance) dominates the motion inside its Roche lobe, so particle orbits there are circling around the planet, not the star. The circumstellar orbits in the vicinity of the planet’s orbit are affected, too. Bodies on “disk orbits” (meaning the disk of bodies circling around the star) have Jacobi constants C depending on the orbital separation parameter x = (r-a)/a (r=initial circular orbit radius far from the planet, a = planet’s orbital radius). If |x| is large enough, the disk orbits are forbidden from approaching L1 and L2 and entering the Roche lobe by the energy constraint. Their effective energy is not enough to pass through the saddle point of the effective potential. Therefore, disk regions farther away than some minimum separation |x| (assuming circular initial orbits) are guaranteed to be Hill-stable, which means they are isolated from the planet.

  32. Hill stability of circumstellar motion near the planet C CL On a circular orbit with x = (r-a)/a, At the L1 and L2 points Therefore, the Hill stability criterion C(x)=CL reads or Example: What is the extent of Hill-unstable region around Jupiter? Since Jupiter is at a=5.2 AU, the outermost Hill-stable circular orbit is at r = a - xa = a - 0.24a = 3.95 AU. Asteroid belt objects are indeed found at r < ~4 AU (Thule group at ~4 AU is the outermost large group of asteroids except for Trojan and Greek asteroids)

More Related