1 / 6

Revision Simultaneous Equations I

Revision Simultaneous Equations I. Solving equations simultaneously. By I Porter. Table of values:. x + y = 6. 2 x - y = 3. This is NOT the best or recommended method. Graphical Method. The graphical method of solving simultaneous equations involves these steps

nituna
Download Presentation

Revision Simultaneous Equations I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Revision Simultaneous Equations I Solving equations simultaneously. By I Porter.

  2. Table of values: x + y = 6 2x - y = 3 This is NOT the best or recommended method. Graphical Method The graphical method of solving simultaneous equations involves these steps Step 1: Complete a table of values for each equation. Step 2: Draw the graphs of both equations on the same number plane. Step 3: From the graphs, find the point of intersection. Step 4: Use the point of intersection to write the solution. Solve the simultaneous equations x + y = 6 and 2x - y = 3 Point of intersection (3,3). Solution is x = 3 and y = 3.

  3. Elimination Method. The elimination method is an algebraic technique that gives the exact solution of simultaneous equations. In this method, the aim is to eliminate one of the variables so that the value of the other variable can be found. The step to follow are: Solve simultaneously 2x - 5y = 13 5x - 3y = -15 Step 1: Make sure that the coefficients of one of the variables are the same. To eliminate y, multiply (1) by 3 & multiply (2) by 5 < (1) < (2) Step 2: Eliminate one variable by adding or subtracting the pair of equations. So 6x - 15y = 39 25x - 15y = -75 To eliminate y, Subtract the two equation as they both contain -15y, same sign (-). (3) - (4) < (3) < (4) Step 3: Solve the new equation to find the value of the remaining variable. -19x = 114 Solve for x. x = -6 Step 4: Substitute this value into one of the original equations to find the value of the second variable. Substitute x = -6 into (1) to find y Hence, 2(-6) - 5y = 13 -12 - 5y = 13 The solution is x = -6 and y = -5. Step 5: Write your answer, showing the values both variables clearly. - 5y = 25 y = 5

  4. Example 1: Solve the simultaneous equations, 2x + 3y = -8 and 4x - y = 12 1 X 2x + 3y = -8 < (1) To eliminate y, multiply (1) by the absolute coefficient of y in (2), 1 Multiply (2) by the absolute coefficient of y in (1) , 3 3 X 4x - y = 12 < (2) So, 2x + 3y = -8 12x - 3y = 36 To eliminate y, Add the two equation as they have opposite in sign (3) + (4) < (3) < (4) 14x = 28 Solve for x. x = 2 Substitute x = 2 into (1) to find y Hence, 2(2) + 3y = -8 4 + 3y = -8 3y = -12 y = -4 • Remember • If the variable you are eliminating • have the • Same signs => subtract • Different signs => add • two equations. The solution is x = 2 and y = -4.

  5. Example 2: Solve the simultaneous equations, 5x + 3y = -19 and 2x + 4y = -16 4 X 5x + 3y = -19 < (1) To eliminate y, multiply (1) by the absolute coefficient of y in (2), 4 Multiply (2) by the absolute coefficient of y in (1) , 3 3 X 2x + 4y = -16 < (2) So, 20x + 12y = -76 6x + 12y = -48 To eliminate y, Subtract the two equation as the same sign (3) - (4) < (3) < (4) 14x = -28 Solve for x. x = -2 Substitute x = -2 into (1) to find y • Remember • If the variable you are eliminating • have the • Same signs => subtract • Different signs => add • two equations. Hence, 5(-2) + 3y = -19 -10 + 3y = -19 3y = -9 y = -3 The solution is x = -2 and y = -3.

  6. Exercise: Solve the following simultaneous equations using the elimination method. a) 3a + b = 4 & 4a - b = 10 Ans: a = 2, b = -2 b) 2a - 7b = 19 & a + 2b = 4 Ans: a = 6, b = -1 c) 4a + 5b = 22 & a + b = 10 Ans: a = 28, b = -18 d) 5a - 3b = -1 & 8a - 2b = 4 Ans: a = 1, b = 2 e) 3a - 4b = 24 & 4a - 2b = 12 Ans: a = 0, b = -6

More Related