280 likes | 500 Views
Historical, application, composition, process, properties, creep
E N D
SUPERALLOYS METE 327 Fall, 2008 METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
OUTLINE Historical perspective Applications Compositions Processes Properties −Creep METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
Applications Gas Turbine Engines −Blades, vanes, disks, combustors Space Vehicles −Rocket motors Nuclear Reactors Submarines Petroleum Equipment METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
Compositions Ni, Co and Fe Based Alloys Solid solution strengthening −Cr, Mo, Al, Nb, Ti and others Precipitation strengthening −Mostly due to Al and Ti − Ni3(Al,Ti), gamma prime −Lattice mismatch, amount, size and morphology Carbide phases − M23C6, M6C or MC −M can be Cr, Ti, Mo or W METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
Astroloy Microstructure (orig. 15 K X) METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
CREEP Deformation at high temperature under constant load Important property of Superalloys Brief discussion now, more next time METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
Engineering Design Using Creep (and Stress-Rupture) Engineering Design Using Creep (and Stress-Rupture) The Larson-Miller Parameter: The Larson-Miller Parameter: Stress Rupture Data Plotted according to the following equation: equation: Stress Rupture Data Plotted according to the following Where M = log e Where M = log e and θ = t exp (-Q/RT) and θ = t exp (-Q/RT) assuming that Q and θ are functions of stress only. t can be a time to rupture or a time to a given creep strain. time to rupture or a time to a given creep strain. assuming that Q and θ are functions of stress only. t can be a METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
Assignment Please email me a question about superalloys before Monday, 17 November jacobsonla@att.net More about creep next time, and Materials Selection for Design METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08
METE 327 Physical Metallurgy Copyright 2008 Loren A. Jacobson 5/16/08