710 likes | 862 Views
Access Codes. A.J. Han Vinck. content. Permutation Codes Random Access bounds 3. Random Access Codes 4. Optical Orthogonal Codes. PERMUTATION CODES. Impulsive noise, broadcast, background Random access codes. Typical noise situation. Narrow band (permanent) Broad band (single impulse)
E N D
Access Codes A.J. Han Vinck
content • Permutation Codes • Random Access bounds • 3. Random Access Codes • 4. Optical Orthogonal Codes A.J. Han Vinck
PERMUTATION CODES • Impulsive noise, broadcast, background • Random access codes A.J. Han Vinck
Typical noise situation Narrow band (permanent) Broad band (single impulse) Broad + narrow band ••• ••• ••• A.J. Han Vinck
idea Transmit messages as: sequences (code words) of length M where all M symbols are different minimum distance (# of differences) D Example: M = 3 D = 2 Code: 123 312 231 132 321 213 f time A.J. Han Vinck
Communication structure example ( 3,2,1 ) message encoder modulator t M-FSK or PPM f Time and frequency diversity ! t > T > T > T 3 Energy detectors f A.J. Han Vinck
Non-coherent detection (FFT) Envelope detector y1 filter matched to f1 1 Quantize > Th = 1 < Th = 0 Envelope detector y2 X filter matched to f2 0 Envelope detector yM 0 filter matched to fM sample 1 0 0 0 Detect Presence of code sequence 0 0 1 0 0 1 0 0 0 0 0 1 A.J. Han Vinck
Non-coherent detection Quadrature receiver using correlators (*)2 cos2fit sin2fit (*)2 A.J. Han Vinck
Non-coherent detection: performance • Decoder: outputs sequence at minimum distance • Error if noise generates valid sequence • Advantage: time and frequency diversity • robusts against: Broad- and narrowband noise 1 0 0 0 1 0 1 0 Detect Presence of code sequence 0 0 1 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 A.J. Han Vinck
2 Code words M = 5 at D = 3 C1 = 1,2,4,3,5 C2 = 1,2,3,5,4 frequency time A.J. Han Vinck
+ narrow band noise C1 = 1,2,4,3,5 frequency Narrow band time A.J. Han Vinck
+ broad band noise (impulse) broad band C1 = 1,2,4,3,5 frequency time A.J. Han Vinck
+ background noise C1 = 1,2,4,3,- C2 = 1,2,-,5,4 Both code words 4 agreements! frequency insert delete time A.J. Han Vinck
Performance minimum distance decoding NOTE: Sequences have minimum distance D • Errors agree with sequences in only 1 positions • > D-1 errors are needed to create another sequence • If E correct symbols disappear due to background noise • > D-1-E errors are needed to create decoding errors A.J. Han Vinck
Upperbound on cardinality Order codewords specified by set of M-D symbols • Set 1: 1, 2, x, x, x 2, 1, x, x, x • Set 2: x, 1, x, 2, x x, 2, x, 1, x • Set 3: x. 1, 2, x, x x, 2, 1, x, x etc. • For distance D, set constains (M-D)! * D codewords • There are different sets. • Hence: A.J. Han Vinck
Code parameters (1) • We showed that • Q1: when do we achieve equality? • Q2: if not, what is the upperbound • References: -Ian Blake, Permutation codes for discrete channels (1975, IT) -P. Frankl and M. Deza, On the max. # of Permutations with given Max. Or Min. Distance (19977, Jrnl of Comb. Th.) A.J. Han Vinck
Code parameters (2) • Simple code constructions: D = 2, 3, M • all cases M < 7 solved • Interesting cases left ? • D = 2 3 4 5 6 7 • 6 x x x 18 x |C| = 18 is the Klöve (2000) result • 7 x x ? ? x x • 8 x x ? ? x x • 9 x x ? ?? x • 10 x x ? ?? ? A.J. Han Vinck
Simple codes D = M • Cyclic permutation of M integers has D = M • |C| = M! / (M-1)! = M • Example: 1 2 3 3 1 2 2 3 1 A.J. Han Vinck
Simple codes D = 2 • The code with all M! permutation has D = 2 • |C| = M! / (2-1)! = M! • Proof: • All symbols are different • Codewords differ in at least 2 positions x x a x x x b x x x b x x x a x A.J. Han Vinck
Simple codes D = M-1 • Construction for prime P: example M = 3 - starting sets B = 0 1 2 2B = 0 2 1 - add constant vector B + 0 0 1 2 2B + 0 0 2 1 B + 1 1 2 0 2B + 1 1 0 2 B + 2 2 0 1 2B + 2 2 1 0 In general: |C| = M!/(M-2)! = M*(M-1) 2 3 A.J. Han Vinck
Random access codes A.J. Han Vinck
Optical access model tr 1 rec 1 tr 2 rec 2 OR rec T tr T We want: „Uncoordinated and Random Access“ A.J. Han Vinck
Time division: central control N users inefficient, when small # active users synchronous easy A.J. Han Vinck
Code division synchronized 0 Code division efficient, but complex 1 signature A.J. Han Vinck
Several possibilities A or 0 B or shifted C or another A.J. Han Vinck
Superimposed codes T code words should not produce a valid code word T words Valid word N n ? N ? A.J. Han Vinck
bounds Lower bound: # combinations for large N: superimposed signatures exist s.t. T log2 N < n < 3 T2 log2 N Obvious for T out of N items A.J. Han Vinck
Example: T 2, n = 9, N = 12 User signature 1 001 001 010 2 001 010 100 3 001 100 001 4 010 001 100 5 010 010 001 6 010 100 010 7 100 001 001 8 100 010 010 9 100 100 100 10 000 000 111 11 000 111 000 12 111 000 000 R = 2/9 TDMA gives R = 2/12 Example: 011 101 101 = x OR y ? A.J. Han Vinck
Example: packet transmission A.J. Han Vinck
(sync) Binary access model (cont‘d) In Out OR A.J. Han Vinck
For PPM: make access model M-ary tr 1 rec 1 tr 2 rec 2 OR rec T tr T A.J. Han Vinck
Maximum throughput Normalized SUM throughput 0.69 bits/channel use Note: we have M-channels available Hence: PPM does not reduce efficiency! -”On the Capacity of the Asynchronous T-User M-frequency noislesss Multiple Access Channel” IEEE Trans. on Information Theory, pp. 2235-2238, November 1996. (A.J. Han Vinck and Jeroen Keuning) A.J. Han Vinck
Low density signaling A.J. Han Vinck
M-FSK multi-access (cont) • Sender 1 {1,2, , M} • Sender 2 {1,2, , M} • |Y| = 2M -1 • Sender N {1,2, , M} SUM CAPACITY M-1 bits/transm. Example for M = 3: input{ 1, 2, 3} output { (1), (2), (3), (1,3), (1,2), (2,3), (1,2,3) } Simple time sharing gives R = log2 M bits/transm. A.J. Han Vinck
M-FSK multi-access (cont) • Capacity obtaining group time sharing! User M=2 M = 3 (2bits/tr) M = 4 (3 bits/tr.) I 0 1 0 1 0 1 I+1 0 2 0 2 I+2 0 3 Output(0),(1) (0,1),(0,2),(1,2) (0,1),(0,2),(1,2) Y (0) (0), (1,2,3) (0,1,2),(0,1,3),(0,2,3) Group I A.J. Han Vinck
Frequency hopping 1 (many variations) 1 0 f Symbol time Hopping period A.J. Han Vinck
Frequency hopping 2 0 1 f t Symbol time Hopping period Different hopping patterns A.J. Han Vinck
Frequency hopping 3 f Slow hopping t 01 11 10 00 f fast hopping t 01 11 10 00 A.J. Han Vinck
advantages • FH avoids tone jammers • FH applies usually noncoherent modulation • the hopping span can be very large • FH is an avoidance system: does not suffer on near-far effect! A.J. Han Vinck
Non-coherent detection Envelope detector y1 filter matched to f1 1 Quantize > Th = 1 < Th = 0 Envelope detector y2 X filter matched to f2 0 Envelope detector yM 0 filter matched to fM sample 1 0 0 0 Detect Presence of signature 0 0 1 0 0 1 0 0 0 0 0 1 A.J. Han Vinck
Transmission model Every user has a signature of length n Example: n = 4, M = 3 3 2 2 1 1: send signature 0: send no pulses A.J. Han Vinck
Channel model tr 1 rec 1 tr 2 rec 2 OR rec T tr T A.J. Han Vinck
M-ary random access codes T words Valid word T N n OR of T signatures does not produce a non transmitting valid signature A.J. Han Vinck