1 / 35

Sterowanie – metody alokacji biegunów

Sterowanie – metody alokacji biegunów. Stosowane dalej oznaczenia. System MIMO. Przy czym:. wymiar. wymiar. wymiar. wymiar. wymiar. wymiar. wymiar. rząd ;. rząd. oraz. Przy ekstrapolacji zerowego rzędu i czasie zatrzaśnięcia T s. jeżeli istnieje.

nova
Download Presentation

Sterowanie – metody alokacji biegunów

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sterowanie – metody alokacji biegunów Stosowane dalej oznaczenia System MIMO Przy czym: wymiar wymiar wymiar wymiar wymiar wymiar wymiar rząd ; rząd oraz Przy ekstrapolacji zerowego rzędu i czasie zatrzaśnięcia Ts jeżeli istnieje

  2. Będziemy rozważali zasadniczo przypadki, kiedy Sformułowanie problemu : macierz systemu, stała, rzeczywista, wymiaru , gdzie: tzn. : wektor stanu, rzeczywisty, wymiaru , tzn. : wektor wejścia, rzeczywisty, wymiaru , tzn. : macierz wejścia, stała, rzeczywista, wymiaru , tzn. : wektor wyjścia lub obserwacji, rzeczywisty, wymiaru , tzn. : macierz wyjścia lub obserwacji, stała, rzeczywista, wymiaru , tzn.

  3. Zadanie sterowania: System będący w chwili początkowej ( dla systemów stacjonarnych) w stanie początkowym , należy przeprowadzić do pożądanego stanu końcowego, lub operacyjnego , zapewniając w stanie przejściowym spełnienie określonych wymagań dynamicznych takich jak np. czas narastania, przeregulowania, oscylacyjność … . Po osiągnięciu stanu operacyjnego , wartość wyjścia musi być zwykle równa narzuconej wartości zadanej Propozycja rozwiązania: Na system działają dwie wielkości zewnętrzne - stan początkowy - sygnał wartości zadanej Przesłanie zwrotne wektora stanu na wejście z wykorzystaniem macierzy sprzężenia zwrotnego od stan - działanie regulacyjne Przesłanie w przód wektora wartości zadanej na wejście z wykorzystaniem macierzy sprzężenia w przód - działanie śledzące

  4. Rozwiązanie Obiekt Przypadek ciągły: Macierz kompensacji wzmocnień statycznych (macierz sprzężenia w przód) Sterownik (prawo sterowania)

  5. Równania opisujące system zamknięty: Stąd: Równanie stanu systemu zamkniętego i macierz systemu zamkniętego CL – closeloop oraz macierz wejścia Przypomnienie: na system działają dwie wielkości zewnętrzne - stan początkowy - sygnał wartości zadanej

  6. Rozważamy systemy liniowe – zasada superpozycji upoważnia do rozdzielnego rozważania Przypadek ciągły – działanie regulacyjne Działanie regulacyjne ma na celu przeprowadzenie wektora stanu systemu ze stanu początkowego do stanu operacyjnego (końcowego) przy zadanych warunkach Będzie to wynikać z odpowiedniego doboru macierzy tego przejścia i/lub osłabieniu wpływu zakłóceń tak, aby osiągnąć stan ustalony Dla obliczenia macierzy przyjmujemy (zgodnie z zasadą superpozycji) Równanie Redukuje się do postaci Wymaganie minimalne – stabilność: wszystkie wartości własne macierzy w lewej półpłaszczyźnie - zapewnienie odwracalności i osiągnięcie stanu równowagi

  7. Macierz jest stałą macierzą o wymiarze i nazywana jest macierzą wzmocnień sterownika Cechy: - w skrajnym przypadku ma elementów, - jako macierz stała związana ze stanem pełni rolę sterownika proporcjonalnego - poprzez związek pełni też rolę sterownika różniczkującego - nie daje sprzężenia o charakterze całkującym

  8. Przypadek ciągły – działanie śledzące Działanie śledzące ma na celu uzyskanie w stanie ustalonym ( ) spełnienie warunku Równanie stanu systemu zamkniętego sprowadza się do stąd Równanie wyjścia systemu zamkniętego przyjmuje postać stąd - warunek jednostkowego wzmocnienia

  9. Przypadek p = q (wymiar p wektora sterowań u = wymiar q wektora wyjścia y) Macierz kwadratowa i jeżeli odwracalna Uwaga 1: macierz wzmocnień jest równa odwrotności wzmocnienia statycznego systemu zamkniętego (liczonego od uM do y) Równania opisujące ten system zamknięty: Stąd: Równanie stanu tego systemu zamkniętego i macierz tego systemu zamkniętego oraz macierz wejścia

  10. Macierz transmitancji systemu opisywanego równaniem stanu określona jest , U nas , stąd Wzmocnienie statyczne

  11. Macierz kompensacji wzmocnienia statycznego jest idealna tylko, Uwaga 2: jeżeli parametry systemu, których zależy, są dokładnie znane i nie zmieniają się w czasie. Kompensacja niespełnienia tych dwóch wymagań – dodanie członu całkującego w pętli sterowania (później !!!) Przypadek p  q (wymiar p wektora sterowań u wymiar q wektora wyjścia y) Najczęściej: p < q Macierz nie może być określona poprzez obliczenie macierzy odwrotnej Wymaganie jednostkowości wzmocnienia określonego zależnością można zastosować jedynie do dostępnych sterowań i odpowiadających wyjść i wartości zadanych Gdy: p > q Można przeciwnie odrzucić stosowanie wymagania jednostkowości dla p – q dostępnych sterowań

  12. Rozwiązanie Przypadek dyskretny: Obiekt Opóźnienie Macierz kompensacji wzmocnień statycznych (macierz sprzężenia w przód) Sterownik (prawo sterowania)

  13. Równania opisujące system zamknięty: Stąd: Równanie stanu systemu zamkniętego i macierz systemu zamkniętego CL – closeloop oraz macierz wejścia

  14. Przypadek dyskretny – działanie regulacyjne Podobnie jak w przypadku ciągłym, przyjmujemy Problem sterowania sprowadza się do określenia sekwencji wartości otrzymywanych dla z zależności , która przeprowadzi system ze stanu początkowego w stan końcowy

  15. Przypadek dyskretny – działanie śledzące Działanie śledzące ma na celu uzyskanie w stanie ustalonym ( ) spełnienia warunku Równanie stanu systemu zamkniętego sprowadza się do stąd Równanie wyjścia systemu zamkniętego przyjmuje postać stąd - warunek jednostkowego wzmocnienia

  16. jeżeli p = q: Podobnie: macierz wzmocnień jest równa odwrotności wzmocnienia statycznego systemu zamkniętego (liczonego od uM do y) Wzmocnienie statyczne

  17. Przykład 1 – mały silnik p.s. z obciążeniem inercyjnym i pomijalną indukcyjnością obwodu twornika i sztywnym wałem (patrz budowa modelu – wykład z MiI) k = , L = 0 Zmienne modelu: - zmienne stanu - zmienna wyjścia

  18. Równania stanu w postaci macierzowej: Równania wyjścia w postaci macierzowej: Schemat blokowy analogowy modelu silnika PS

  19. Silnik używany do sterowania położeniem kątowym lub liniowym Przykład – pozycjonowanie głowicy plotera Model w postaci nie-macierzowej Transformacja Laplace’a

  20. Transmitancja operatorowa

  21. gdzie, - wzmocnienie w torze napięcie – położenie, - stała czasowa silnika W wielu przypadkach

  22. Wówczas i Równania stanu dla tych warunków Chcemy umieścić wartości własne systemu zamkniętego w określonych miejscach Pożądany obszar alokacji biegunów systemu zamkniętego Linie stałej wartości współczynnika tłumienia i pulsacji drgań nietłumionych systemu rzędu drugiego

  23. Wybierzmy Postulowany wielomian charakterystyczny systemu zamkniętego Jest to też wielomian charakterystyczny macierzy systemu zamkniętego Równania opisujące system zamknięty: Stąd Równanie stanu systemu zamkniętego i macierz systemu zamkniętego

  24. Wielomian charakterystyczny macierzy systemu zamkniętego wyrażony przez parametry systemu W przykładzie Stąd

  25. Z porównania dwóch wielomianów charakterystycznych i stąd Wybierając możemy określić Z klasycznej teorii:  odwrotność stałej czasowej – pulsacja załamania

  26.  Dla systemu drugiego rzędu oraz Gdyby np. pulsacja drgań nietłumionych miałaby być pięciokrotnie większa od pulsacji załamania, a współczynnik tłumienia stąd i wzmocnienia

  27. Schemat zbudowanego systemu sterowania Silnik

  28. Przykład 2 – system mechaniczny rzędu drugiego Model - masa - współczynnik sprężystości - współczynnik tłumienia - siła zewnętrzna Zmienne stanu Równania stanu

  29. Jeżeli przyjąć jako wejście przyśpieszenie ruchu Jeżeli przyjąć jako wejście przyśpieszenie ruchu – macierz systemu i macierz wejścia Wyprowadzając jak w Przykładzie 1 transmitancję - pulsacja drgań nietłumionych i współczynnik tłumienia wyniosą

  30. Postępując dalej podobnie jak w przykładzie 1 - wielomian charakterystyczny z drugiej strony gdzie Z porównania dwóch wielomianów charakterystycznych

  31. Jeżeli chcemy, aby system zamknięty był „wolniejszy” od systemu oryginalnego Wartość będzie ujemna Obliczenia numeryczne dla danych Macierz systemu i macierz wejścia Wartości własne, pulsacja drgań nietłumionych i współczynnik tłumienia

  32. System bardzo słabo tłumiony – celem sterowania może być zwiększenie tłumienia Jeżeli przyjąć wówczas

  33. Schemat zbudowanego systemu sterowania

  34. Wyniki symulacji Bez sprzężenia Ze sprzężeniem

  35. Dziękuję za uczestnictwo w wykładzie i uwagę

More Related