1 / 23

Statistik Lektion 8

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!. Afhængige og uafhængige stikprøver. Ved en uafhængig stikprøve udtages en stikprøve fra hver gruppe.

nuwa
Download Presentation

Statistik Lektion 8

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. StatistikLektion 8 Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

  2. Afhængige og uafhængige stikprøver • Ved en uafhængig stikprøve udtages en stikprøve fra hver gruppe. • Mænd og kvinders løn: Tag en stikprøve fra gruppen af mænd og en stikprøve fra gruppen af kvinder og sammenlign gennemsnitslønnen for de to grupper. • Kilometer per liter: Tilfældig stikprøve af Fiat’er og tilfældig stikprøve af Lancia’er. • Ved en afhængig stikprøve er observationerne i de to grupper parrede. Oftest er det den samme person/genstand, der bliver observeret i to forskellige situationer. • Bio benzin kontra almindelig benzin: Vælg tilfældigt et antal VW Touran’er og test dem med de to forskellige typer benzin. • Original Nike sko kontra Super Nike sko: Vælg tilfældigt nogle personer til at løbe 5 km og lad dem teste begge par sko.

  3. Forrige forlæsning • Sammenligning af to middelværdier – kendt varians norm. pop. eller stort n • Hypotesetest + Konfidensinterval • Sammenligning af to middelværdier – ukendt varians normal population • Hypotesetest + Konfidensinterval • Parrede observationer • Hypotesetest + Konfidensinterval • Sammenligning af to andele • Hypotesetest + Konfidensinterval • Test for ens varians i to populationer Denne forlæsning

  4. Parrede observationer • For den i’te person har vi to observationer Xi,1og Xi,2, fx. blodtryk før og efter behandling. • For den i’te person definerer vi differencen Di = Xi,1-Xi,2. • Forskelle mellem ”før” og ”efter” kan nu undersøges vha. hypotesetest af middeldifferencen, mD. • Typisk antagelse er, at differencerne er normalfordelte, Di ~ N(mD, sD2). • Estimaterne for hhv. middelværdi og varians betegnes og .

  5. Parrede observationer • Udregn differencer:

  6. Samme Historie I R Commander • Statistics → Means → Paired t-test… • p-værdi = 0.08345 > 0.05, dvs. vi kan ikke afvise H0. • Dvs. vi kan ikke afvise at de to sko-typer er lige gode. Bemærk: 95% konfidensinterval for forskellen i middelværdi indeholder 0!

  7. Bemærkninger til parret t-test • Selvom vi har to sæt af observationer, så koger det ned til et sæt af differencer. Vi tester derfor kun én middelværdi, og kan derfor ”genbruge” t-testet fra sidst. • Ved at have parrede observationer, forsvinder variationen i observationerne, der skyldes variationen i ”deltagerne”. Dette gælder kun hvis differencerne er uafhængige af før-målingerne.

  8. Sammenligning af to andele, p1 = p2, store stikprøver H0: p1 – p2 = 0 ( dvs. H0 : p1 = p2 ) H1: p1 – p2 ≠ 0 ( dvs. H0 : p1 ≠ p2 ) Teststørrelse Hvis H0er sand, så gælderZ ~ N(0,1). Forkast H0, når p-værdien er lille, eller sammenlign med de kritiskeværdier.

  9. Eksempel - Titanic • Er andelen af mænd, der overlevede, pm, den samme som andelen af kvinder, der overlevede, pk?

  10. Eksempel - Titanic • H0: pk= pm • H1: pk≠ pm • H0 forkastes da p-værdien = 2·P(|Z|>18.23) ≈ 0.

  11. Sammenligning af to andele, p1 - p2=D, store stikprøver

  12. Konfidens interval for differencen, p1 – p2, mellem to andele

  13. Eksempel - Titanic • Find et 95% konfidensinterval for forskellen i andelen af overlevende blandt mænd og kvinder: • Da konfidensintervallet ikke indeholder nul, kan vi afvise H0: m1 = m2 på signifikansniveau a = 0.05.

  14. F fordelingen og test for lighed af to populationsvarianser F fordelingen er fordelingen af brøken af to chi-i-anden stokastiske variable, der er uafhængige og hver er divideret med antallet af dens frihedsgrader. En Ffordelt stokastisk variable med k1 og k2 frihedsgrader:

  15. F-tabellen – tabel 9, side 867 Critical Points of the F Distribution Cutting Off a Right-Tail Area of 0.05 k1 1 2 3 4 5 6 7 8 9 k2 1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 F-fordelingen med 7 og 12 frihedsgrader 0 . 7 0 . 6 0.05 0 . 5 ) 0 . 4 F ( f 0 . 3 0.05 0 . 2 0 . 1 F 0 . 0 0 1 2 3 4 5 3.01 1/F12,7,0.05 = 0.278 F7,12,0.05 = 3.01 Når man skal finde det venstre kritiske punkt, kan man bruge følgende sammenhæng:

  16. Kritiske punkter i F fordelingenF(6, 9),  = 0.10 Det højresidet kritiske punkt: F6,9,0.05= 3.37 Det tilsvarende venstresidet punkt: F-fordeling med 6 og 9 frihedsgrader 0 . 7 0.90 0 . 6 0.05 0 . 5 ) 0 . 4 F ( f 0 . 3 0.05 0 . 2 0 . 1 0 . 0 F 0 1 2 3 4 5 F6,9,0.95 = 1/F9,6,0.05 = 0.2439 F6,9,0.05 = 3.37

  17. Test for ens varians Teststørrelsen til test for ens populations varians i to normalfordelte populationer er givet ved: • I: Tosidet test: • 1 = 2 • H0: 1 = 2 • H1:2 • II:Ensidet test • 12 • H0: 1  2 • H1: 1  2

  18. Eksempel

  19. Eksempel Population 1 Population 2 Signifikansniveau: a = 0.10 Kritiske værdier: Hypoteser: Teststørrelse: H0 kan ikke afvises på signifikans-niveau 10%, da teststørrelsen ikke er større end 3.28 eller mindre end 0.35.

  20. Vigtigste fordelinger i kurset • Binomial B(n,p) • Normal N(m,s2) • c2 c2(n) • tt(n) • F F(k1,k2)

  21. Flyskræk! • Passer overskriften? • Politiken 6/12-’07 • Er du tryg ved at flyve? • Ja: 86% i 2005 83% i 2007 • Er der sket en statistisk signifikant ændring? • Sum selv svaret ;-)

  22. Sidste Summeopgave • Antag at der er blevet udspurgt 1001 personer i både 2005 og 2007. • Test på signifikansniveau a=0.05 om der er en forskel i andelen af folk, der er trygge ved at flyve. • Bestem p-værdien. • Hvad synes I om overskriften?

  23. Til efteråret: Økonometri • Økonometri: Statistik anvendt på økonomiske problemstillinger • Indhold: • Lineær regression - Middelværdien er forklaret ved en eller flere kontinuerte forklarende variable • Form: • 7 forelæsninger efterfulgt af projekt.

More Related