1 / 21

A. Valcarce (Univ. Salamanca) J. Vijande, J.-M. Richard

The Seventh Asia-Pacific Conference on Few-Body Problems in Physics. A few certainties and many uncertainties about multiquarks. A. Valcarce (Univ. Salamanca) J. Vijande, J.-M. Richard. 1.- Introduction: A way forward 2.- Simple systems – Simple models

ocie
Download Presentation

A. Valcarce (Univ. Salamanca) J. Vijande, J.-M. Richard

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Seventh Asia-Pacific Conference on Few-Body Problems in Physics A few certainties and many uncertainties about multiquarks A. Valcarce (Univ. Salamanca) J. Vijande, J.-M. Richard

  2. 1.- Introduction: A way forward 2.- Simple systems – Simple models (All-heavy) tetraquarks: Chromoelectric models String models Dibaryons and baryonia: Chromoelectric models Chromomagnetic models Hidden flavor pentaquarks: AL1 model 3.- Unravelling the pattern of XYZ mesons Molecular states: BCN or CQC Coupled channel effects  Hidden color vectors A quark-model mechanism for the XYZ mesons 4.- Conclusions Outline APFB 2017 / A. Valcarce

  3. SLAC M = 3.695 GeV  = 2.7 MeV Experiment: The first hidden-charm exotic states (1974) M = 3.105 GeV  < 1.3 MeV BNL M = 3.1 GeV   0 MeV SLAC 1.- Introduction APFB 2017 / A. Valcarce

  4. Theory: Predictions 1.- Introduction APFB 2017 / A. Valcarce

  5. T. Barnes et al., Phys. Rev. D72, 054026 (2005) Theory: Predictions Chromoelectric central potential: Chromomagnetic spin-spin term: Chromomagnetic spin-orbit term: 1.- Introduction APFB 2017 / A. Valcarce

  6. X(3872) <2.3 MeV Ds1(2460), JP=1+,  < 3.5 MeV New experimental challenges (2003) Ds0*(2317), JP=0+, <3.8 MeV 1.- Introduction APFB 2017 / A. Valcarce

  7. XYZ mesons LHCb pentaquarks WASA dibaryon Baryonia ………? Are all these resonances (if they really exist!) multiquark states and/or hadron-hadron molecules? Back to 1974: A challenge for theory!! |ccnn |Meson (B=0)  |qq , |qqqq |nnnnc |Baryon (B=1)  |qqq , |qqqqq Predictions: An experimental challenge!! 1.- Introduction APFB 2017 / A. Valcarce

  8. J.-M.R., A.V., J.V., Phys. Rev. D 95, 054019 (2017) (All-heavy) tetraquarks • Manyspeculationsaboutthestability of (Q1Q2Q3Q4): (cccc), (bbcc), (bccc), … • Extrapolation of quarkoniumdynamics to higherconfigurations • New color substructures: 33 and 66 • 3- or 4-body forces: many-bodyconfiningforces • Role of antisymmetry: maypenalizefavourablecomponents Chromoelectric (CE) limit (Two-body forces and color as a global operator) Limit of very heavy constituents: Neglect chromomagnetic terms  (mi mj)-1  Atomic physics • Atomicphysics • (e+ e+ e- e-)  Ps2positroniummolecule, stablealthoughwithtinybinding • (p pe- e-)  H2hydrogenmolecule, stablewith a comfortablebinding • Stabilitydependscriticallyonthemassesinvolved: (M+ M+ m- m-) more stablethan(m+ m+ m- m-) • But (M+ m+ M- m-) unstableif M/m  2.2 2.- Simple systems – Simple models APFB 2017 / A. Valcarce

  9. Symmetry breaking • QM  Min (p2 + x2 + lx) [E=1-l2/4]< Min (p2 + x2)  Min (Heven + Hodd) < Min (Heven) • Min (M+ M+ m- m-) < Min (m+m+m-m-),, 2m-1=M-1+m-1 • Theyhavethesamethreshold • Min (HC-even + HC-odd) < Min (HC-even) • H2is more stable tan Ps2 • Thus(M+ m+ M- m-) more stablethan(m+m+m-m-) ???? • Symmetrybreakingbenefits more to (M+M-)+(m+m-) • Onemayexpectsomekind of metastabilitybelow(M+m-)+(m+M-) • In short: (Un)favourablesymmetrybreaking can (spoil)generatestability Breakingparticlesymmetry No!! 2.- Simple systems – Simple models APFB 2017 / A. Valcarce

  10. Symmetry breaking • Equal-mass case: Asymmetry in thepotentialenergy •  Highestenergy: equalgij (rigorous) •  Lowestenergy: broaderdistribution of gij • Multiquarks • Tetraquarks are penalizedbythe non-Abeliannature of color • Ps2 favoredcompared to quark models  (QQQQ) unstable in naive CE limit • Likewise H2, (QQqq) wouldstableforlarge M/m ratio • (QqQq) stronglydependentonthepresence of twothresholds • Delicatefour-bodyproblem: Mixingeffects do nothelpmuch • Approximationsmay favor bindingartificially × 2.- Simple systems – Simple models APFB 2017 / A. Valcarce

  11. Improved chromoelectric model: Many-body confining forces A  String model with |T B  String model with |T and |M C  Pairwise with |T and |M D  Adiabatic limit of C Bound (M+ M+ m- m-)  QQqq Unbound Unbound (M+ m+ M- m-)  QQqq Bound Flip-flop B  u Butterfly A,D (adiabatic) bound !! BUT B,C (color+antisymmetry) unbound J.V., A.V., J.-M.R., Phys. Rev. D 76, 114013 (2007), Phys. Rev. D 87, 034040 (2013) 2.- Simple systems – Simple models APFB 2017 / A. Valcarce

  12. All-heavy tetraquarks • (bbbb) and (cccc) are unstable in coherent 4-body estimates in naiveCE models. Theyfollowthetrends of (++) in atomicphysics, butlessfavourabledue to the non-Abelian algebra of color charges. • (bcbc) mighthavesomeopportunities as compared to (bbbb) and (cccc) • (bc)(cb)  MM • BUT (bcbc) there are twodifferentthresholds • (bb)(cc)   J • THUSitmaypresentmetastabilitybelowthe MMthreshold (degeneracy!!) • (bbcc) although more delicate: bestcandidate to be stable • Benefitsfrom C-conjugationbreaking • Thereis a single threshold • (QQqq) favored in the CE limitdue to thestriking M/m dependence • For non-identical quarks and antiquarks, stringpotentialsoffergoodopportunities 2.- Simple systems – Simple models APFB 2017 / A. Valcarce

  13. Similar findings: Baryonia (Q3q3) and dibaryons (Q3q3) Dibaryons  Baryonia  J.V., A.V., J.-M.R., Phys. Rev. D 85, 014019 (2012) 2.- Simple systems – Simple models APFB 2017 / A. Valcarce

  14. Chromomagnetic term: Dibaryons (qqqq'QQ') J.V., A.V., J.-M.R., P.S., Phys. Rev. D 94, 034038 (2016) Color + Antisymmetry JP=0+ Conflict between CE and CM It goes against binding 2.- Simple systems – Simple models APFB 2017 / A. Valcarce

  15. Hidden flavor pentaquarks: (QQqqq) AL1 Three color vectors for each Jacobi coordinate arrangement Two of them with hidden color: octet-octect • Basic contribution of hidden-color components: 15 color-spin vectorsfor J=1/2 or 12 for J=3/2 • The color octet (qqq) configurationreceives a more favourablechromomagneticenergythanthe color singlet in thethreshold: • Color chemistry: H. Hogaasen, P. Sorba, • Nucl. Phys. B145, 119 (1978) Stable! Below S- and D-wave thresholds Perhapsstillnarrow! Below S-wave thresholdbutabove D-wave one. 2.- Simple systems – Simple models APFB 2017 / A. Valcarce

  16. Thebindingis a cooperativeeffect of CE and CMeffects, disappearing in the CE limit • The wave function contains color sextet and color octet configurations for the subsystems and can hardly be reduced to a molecular state made of two interacting color-singlet hadrons  CE CE + CM  CE CE + CM 2.- Simple systems – Simple models APFB 2017 / A. Valcarce

  17. Molecular QnQn states: BCN and CQC Q  c Molecular How the molecular QnQn states are formed in a quark model framework? 3.- Unravelling the pattern of XYZ mesons APFB 2017 / A. Valcarce

  18. c c n c n n w J/ c n D D Coupled channel effect  Hidden color vectors T.F.C., A.V., J.V., Phys. Lett. B 709, 358 (2012) 3.- Unravelling the pattern of XYZ mesons APFB 2017 / A. Valcarce

  19. There should not be a partner of the X(3872) in the bottom sector There should be a JP=1+ bound state in the exotic bottom sector QnQn T.F.C., A.V., J.V., Phys. Lett. B 699, 291 (2011) T.F.C., A.V., Phys. Lett. B 758, 244 (2016) Q  b Q  c QQnn 3.- Unravelling the pattern of XYZ mesons APFB 2017 / A. Valcarce

  20.  aQn (Qn)(nQ) A quark-model mechanism for XYZ mesons (bnbn) (QnQn) L=0,S=1,C=+1,P=+1,I=0 (QQ)(nn) (Qn)(nQ) Central Spin-spin MQQ + Mnn MQn + MnQ (bnbn) L=0,S=1,C=+1,P=+1,I=1 (Qn)(nQ) (QQ)(nn) 3.- Unravelling the pattern of XYZ mesons 20/21

  21. Conclusions • In multiquark studies, both CE and CM effects have to be included, color may generate conflicts between the preferred configurations. • All-heavy tetraquarks are unstable in naive CE models. • (QqQq) might have some opportunities of metastability below the MM threshold, which is extremely important for the existence of the X(3872) in the charm sector. • (QQqq) are definitively the best candidates for stable multiquark states due to the striking M/m dependence in the CE limit. Besides, for non-identical quarks and antiquarks, string potentials offer good opportunities. • Hidden heavy flavor pentaquarks are predicted if there is chromomagnetic interaction due to hidden-color component dynamics. • Hidden flavor components (unquenching the quark model) offer a possible explanation of new experimental data and old problems in the meson and baryon spectra. There is not a proliferation of multiquarks, they are very rare. • We have presented a plausible mechanism explaining the origin of the XYZ mesons: based on coupled-channel effects. • We do not find evidence for charged and bottom partners of the X(3872). To answer this question is a keypoint to advance in the study of hadron spectroscopy. 4.- Conclusions 21/21 APFB 2017 / A. Valcarce

More Related