170 likes | 437 Views
ID-Based Proxy Signature Using Bilinear Pairings. Author: Jing Xu, Zhenfeng Zhang, and Dengguo Feng Presenter: 林志鴻. Outline. Introduction Preliminaries The Proposed Scheme Conclusion. Introduction.
E N D
ID-Based Proxy Signature Using Bilinear Pairings Author: Jing Xu, Zhenfeng Zhang, and Dengguo Feng Presenter: 林志鴻
Outline • Introduction • Preliminaries • The Proposed Scheme • Conclusion
Introduction • An entity to delegate signing capabilities to other participants so that they can sign on behalf of the entity within a given context Alice Bob context
Outline • Introduction • Preliminaries • The Proposed Scheme • Conclusion
Preliminaries • Bilinear Pairing • Gap Diffie-Hellman (GDH) Group • ID-Based
Bilinear Pairing • e : G × G → V • Bilinearity • Non-degeneracy • Computability
Gap Diffie-Hellman (GDH) Group • (t, ε)-gap Diffie-Hellman group • CDH problem︰ given P, aP, bP ∈ G compute abP
ID-Based • The user’s public key can be calculated directly from his/her identity rather than being extracted from a certificate issued by a certificate authority (CA)
Outline • Introduction • Preliminaries • The Proposed Scheme • Conclusion
Proposed Scheme • PS=(G,K, S, V, (D,P),PS,PV,ID) • – G: 設定k 為安全參數. G是由P 產生prime order q > 2k的GDH group, 而e : G × G → V 是一個 bilinear map. 隨機選取master key s ∈ Z∗q並設定Ppub= sP 使用hash functions H1,H2,H3 : {0, 1}∗ → G, H4 : {0, 1}∗ → Z∗q
Proposed Scheme (cont.) • – K: 給一使用者ID, 計算QID= H1(ID) ∈ G 及對應的私鑰dID= sQID ∈ G • – S: 為了對訊息mω簽章給指定者IDi的私鑰di1. 隨機選取rω ∈ Z∗q計算Uω= rωP ∈ G 並令Hω= H2(IDi,mω, Uω) ∈ G 2.計算Vω= di+ rωHω ∈ G mω上的簽章是warrant ω = Uω, Vω
Proposed Scheme (cont.) • – V:驗證IDi對mω做的簽章ω = Uω, Vω驗證者取Qi= H1(IDi) ∈ G 和Hω= H2(IDi,mω, Uω) ∈ Ge(P, Vω) = e(Ppub,Qi)e(Uω,Hω) • – (D,P):為了指定IDj為代理者proxy signing key skp = H4(IDi, IDj,mω, Uω)dj + Vω IDi IDj mω +Warrant ω
Proposed Scheme (cont.) • – PS: IDj為代表IDi對m做簽章時給予一個skp1.隨機選取rp ∈ Z∗q計算Up = rpP ∈ G 令Hp = H3(IDj ,m,Up) ∈ G2.計算Vp = skp + rpHp ∈ G此時 psig =(mω,IDj,Uω,Up,Vp)
Proposed Scheme (cont.) • – PV:使用指定者IDi驗證對m做出的代理簽章psig, 取出Qi = H1(IDi) ∈ G, Qj = H1(IDj ) ∈ G , Hω = H2(IDi,mω,Uω) ∈ G 和Hp = H3(IDj ,m,Up) ∈ G • – ID: 給一用於m得代理簽章psig則ID(psig)= IDj表示代理認證演算法
Proposed Scheme (cont.) • 正確性
Outline • Introduction • Preliminaries • The Proposed Scheme • Conclusion
Conclusion • 本篇所提出的方法之安全性與在Random Oracle model中解CDH問題有緊密的關聯並達到ID-based代理簽章中安全縮減最佳化