1 / 20

Studies of radiative  meson decays with KLOE

Studies of radiative  meson decays with KLOE . P.Gauzzi (La Sapienza University and INFN – Rome) Contributed papers : ABS183, ABS184, ABS185. 31 st International Conference on High Energy Physics 24-31 July 200 2 , Amsterdam. Outline Scalars:  f 0 (980)  a 0 (980)

odell
Download Presentation

Studies of radiative  meson decays with KLOE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Studies of radiative  meson decays with KLOE P.Gauzzi (La Sapienza University and INFN – Rome) Contributed papers: ABS183, ABS184, ABS185 31st International Conference on High Energy Physics 24-31 July 2002, Amsterdam • Outline • Scalars: f0(980) • a0(980) • Pseudoscalars:    • Conclusions

  2. DANE • Frascati -factory: e+e- collider • s 1020 MeV  M ; peak3000 nb • 2001 performance:peak average • L(cm2 s1)5·1031 3.5·1031 • day L dt (pb1)3 1.8 • 2002 data taking started on • May 1st :same luminosity of 2001, background reduction of a factor 2—3 • Collected data: • 2000: 25 pb-1  7.5 x 107f • (analysis completed) • 2001: 190 pb-1  5.7 x 108f • (analysis in progress)

  3. KLOE • Drift chamber: • gas: He-iC4H10 • dpT/pT= 0.4% • xy150 m ; z2 mm • E.m. calorimeter (Pb-Sci.Fi.): • sE/E = 5.7% / (E(GeV)) • st = 54 ps/(E(GeV))50 ps • 98% of 4 Magnetic field:0.52 T

  4. f0(980) (I=0) f000+-  = 40—100 MeV • a0(980) (I=1) a0 “ “ • not easily interpreted as mesons (3P0 nonet) • Other interpretations: states (Jaffe ’77) • molecules (Weinstein-Isgur ’90) • Br(f0(980)) and Br(a0(980)) and the mass spectra are • sensitive to the nature of these scalar particles: Scalar mesons (JPC= 0++) Br(f0) 5  10-5 3  10-4 10-5 Br(a0) 2  10-5 2  10-4 10-5 • Studied decays (data sample: 16 pb-1 from the 2000 data,~5107) • f0 ; f000  5  final state • a0 ; a00  (39%)  5  • a0 ; a00 +-0 (23%)  2 ch. tracks +5  • first observation  Previous meas. at VEPP2M

  5. 5  final state • cross sect.(nb) • Signal: 00 (f0 ; (500) ; 00) ~ 0.35 •  00  0 • 0 ( a0 ;  00) ~ 0.1 •   • Background: e+e-0 00 (0) ~ 0.5 • 3 (with accidental ’s) (~17) •  000 (with 2 lost) (~14) • Sample selection: • exactly 5 prompt photons • E > 7 MeV • |cos| < 0.93 to avoid the quadrupole region • 5Ei > 700 MeV to reject KLKS neutrals

  6.  0 0 00 • Constrained kinematic fit • to improve resolutions • Photon pairing • |M - M| < 5(M) • Reject events with: • |M - M| < 3(M) •  3102 events • <> = 40% 1+cos2 Estimated backgr. (~20%) e+e-0 00 33924 0 16616  000 15912

  7. radiative g radiative g gKK gf0KK gf0 f  0 0 K+ f g f0 K- 0 0 Fit to M spectrum • Model : • 1) f0 dominated by kaon loop • (Achasov-Ivanchenko, Nucl.Phys.B315(1989)) • 2) f0 propagator with finite width corrections • 3) (500) B-W with M=478 MeV and =324 MeV • (Fermilab E791-Phys.Rev.Lett.86(2001)770) • 4) point-like coupling of (500) to  • (Gokalp,Yilmaz,Phys.Rev.D64(2001)) • 5)  + interference term parameterizations • from Achasov-Gubin, (Phys.Rev.D63(2001)) • Two fits: • Fit A : | (f0) + (00 )|2 • Fit B : | (f0)+ () + (00 )|2 • Free parameters: Mf0, g2f0KK, g2f0/g2f0KK, g and • Br(0000)

  8.  contribution negligible • Br(00) = (1.09  0.03  0.05)  10-4 (Fit B) • (SND: (1.220.10 0.06)  10-4 ; CMD-2: (1.080.170.09)  10-4) Fit results A B 2/ndf 109.5/33 43.2/32 Mf0 (MeV) 9624 973 1 g2f0KK/(4) 1.290.14 2.79 0.12 (GeV2) g2f0KK/g2f0 3.220.29 4.000.14 g — 0.060 0.008 • Large f0- destructive interference at M < 700 MeV (see also the work of Gokalp and Yilmaz (Phys.Rev.D64(2001)on the SND spectrum)

  9. Events cos 0 (with ) • Constrained kinematic fit • to improve resolutions • Photon pairing: (1) 00 ; (2) 0 •  reject00 events • M  < 760 MeV (reject f0 events) • |M - M| < 3(M) •  916 events <> = 32 % Events M (MeV/c2) • Estimated backgr.: (~30%) • e+e-0 00 546 • 00 15216 •  000 9810 •   52 • Data —MC Br(0)=(8.510.510.57) 10-5 SND :(8.8 1.40.9)  10 –5 ;CMD-2: (9.0 2.41.0)  10 –5

  10. 0 +-5 (+-0) • No background with the same final state • Backgr.: 2 Tracks + 3/4 photons (e+e-0 ; +-0) • ( ; +-0) • 2 Tracks + 6 photons • (KSKL+-000) • 1 vertex in IR with 2 tracks • 5 prompt  (E>10 MeV, |cos|<0.93) • Constrainedkinematic fit • M+-< 425 MeV (reject KS  p+p-) •  197 events <>=19% • estimated backgr. 44 events Br(0)=(7.960.600.47)  10-5

  11. a0 shape dBr/dm10-6 (MeV-1) Fit to the M spectra • Same model as for the f0 (kaon loop) • Combined fit, relative normalization fixed • to Br()/Br(+-0) • Free parameters: • g2a0KK, ga0/ga0KK and Br(000) • Ma0=984.8 MeV (PDG) fixed • 2/ndf 27.2/25 • g2a0KK/(4) (GeV2) 0.40  0.04 • ga0/ga0KK1.35  0.09 • Br(000) (0.5  0.5)  10-5 5 +-5 Br(a00)= (7.4  0.7)  10-5 M (MeV/c2)

  12. f0 parameters are compatible with model • a0 parameters seem not compatible with model Summary of fit results • Comparison with predictions from Achasov-Ivanchenko, Nucl.Phys.B315(1989) KLOE f0 model g2f0KK/(4) 2.790.12 2.3 (=g2a0KK/4) 0.15 (=g2a0KK/4) 0.3 (=2g2a0KK/4) (GeV2) gf0 /gf0KK 0.500.01 0.3—0.5 2 0.5 Br(00)1041.090.07 ~ 1 ~ 0.15 ~ 0.2 a0 model g2a0KK/(4) 0.400.04 2.3 (=g2f0KK/4) 0.15 (=g2f0KK/4) (GeV2) ga0/ga0KK 1.350.09 0.91 1.53 Br( a0)1040.740.07 ~ 2 ~ 0.2

  13.  /  • The mass eigenstates ,  are related to the SU(3) octet-singlet • 8, 1 through the mixing angle P • Recent studies based on PT and phenomenological analyses • suggested a two mixing angle scenario • In the quark flavour basis the two mixing angles are almost equal •  mixing is described by only one parameter (P) • Pcan be extracted from the ratio(Bramon et al., Eur.Phys.J.C7(1999)) : • Br() can probe the gluonic content of 

  14.  /  • Same final state +- 3: • ;+-0;0 Br  3  10-3 •  ; +- ;  Br  2  10-5 • Backgr.: KLKS(with KLdecaying near the IP), +-0 • Data sample : 16 pb-1 from the 2000 data (~5107 ) • 1 vertex in IR with 2 tracks • 3 prompt  (E>10 MeV, |cos|<0.93) • Constrainedkinematic fit • : • 320 < Erad<400 MeV • E++E-< 550 MeV (reject +-0) •  N() = 50210  220 events  = 37 %

  15.  /  • : • Main background is  • Selection: elliptic cut in the plane • of the two most energetic photons N() = 120 12 5 events  = 23 % • F =0.95 (interference with e+e-( ) M (MeV)

  16. (2) (1)  /  • Mixing angle: P=(41.8  1.7) •  P=(-12.9 1.7) • Using Br() = (1.297  0.003) % (PDG) •  Br() = (6.10 0.67  0.45)  10-5 • PDG : (6.7 )  10-5 • Gluonic content of : • Consistency check: if Z=0  |Y|=cosP • other constraints on X and Y from: • (1) /(0 • (2) /(0 • 

  17. Conclusions • With the 2000 data KLOE studied the radiative decays of the •  into scalar and pseudoscalar mesons • We measured the branching ratios of : • 00  Phys.Lett.B537(2002) • 0  “ “ B536(2002) • reducing the experimental uncertainties • We evaluated the couplings of f0 (a0) to KK and to  () from • the fit to the invariant mass spectra • Pseudoscalar mixing angle in the quark flavor basis, • and best measurement of Br()  Phys.Lett.B541(2002) • Other KLOE results: KSe (Phys. Lett.B535(2002)), • (KS+-()) / (KS00) (Phys.Lett.B538(2002)) • Analysis on 2001 data (190 pb-1) is in progress, • results on f0+- are also expected, other 300 pb-1 from 2002 • data taking are foreseen

  18. Comparison with other experiments  decays other f0KLOE SND(1) CMD-2(1) WA102(2) E791(3) Mf0 (MeV)9731 9705 9757 9878 9774 g2f0KK/(4) 2.790.12 2.470.73 1.480.32 0.390.06 0.020.05 (GeV2) g2f0KK/g2f04.000.14 4.60.8 3.610.62 1.630.46 0.20.5 g0.060 0.008 a0KLOE SND E852(4) Crystal Barrel(5) Ma0 (MeV)984.8 (fixed) 995 9913 9996 g2a0KK/(4) 0.400.04 1.4 0.220.03 (GeV2) ga0/ga0KK 1.350.09 0.750.52 1.050.06 0.93—1.07 • f0   ;  contribution negligible (CMD2: combined f000f0+-) • (2) WA102 (CERN): centrally produced K+K-,+- in pp at 450 GeV/c • (3) E791 (Fermilab): f0 production in DS-+ • (4) E852 (BNL): a0 production in -p+-n and -p0n at 18.3 GeV/c • (5)

  19.  f0(980) a0(980) are not easily interpreted as qq mesons • Other interpretations: qqqq states (Jaffe ’77) • KK molecules (Weinstein-Isgur ’90) Scalar mesons (JPC= 0++) • f0(980) (I=0) f000+-  = 40—100 MeV • sizeable ss contents; strongly coupled to KK • a0(980) (I=1) a0 “ “ • coupled to KK • Possible interpretation (3P0 nonet): • f0-a0 mass degeneracy • f0 decay is OZI suppressed • small  partial width (0.3—0.4 keV) • small masses wrt the 3P2 nonet ( ~ 1500 MeV) • other candidates for the 3P0 nonet (a0(1450), f0(1370), f0(1710))

  20. 00 rejection Data • 0 • 000 • 00 |M(1)- M (2)| (MeV) M (MeV) (0 wrong pairing) • Parabolic cut to reject 0 •  M < 760 MeV to reject f0 + 0 wrong pairing • 00 MC-simulation with the experimental M spectrum

More Related