1 / 71

Exotic charmonium-like states in B decays

ITEP Seminar, 18 Nov 2009. Exotic charmonium-like states in B decays. Roman Mizuk, ITEP. Conventional Charmonium in Quark Model. c. c. Above open charm threshold broad states are expected. n (2S+1) L J n radial quantum number J = S + L P = (–1) L+1 parity

violet-best
Download Presentation

Exotic charmonium-like states in B decays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ITEP Seminar, 18 Nov 2009 Exotic charmonium-like states in B decays Roman Mizuk, ITEP

  2. Conventional Charmonium in Quark Model c c Above open charm threshold broad states are expected n(2S+1)LJ n radial quantum number J = S + L P = (–1)L+1parity C = (–1)L+Scharge conj. Below open charmthreshold most states are narrow

  3. B-factories e+e–→(4S) and nearby continuum: Ecms ~ 10.6 GeV L ~ 1034/cm2/s 950 + 530 fb-1 in total

  4. cc production at B factories

  5. Outline • X(3872) • States near 3940 MeV • Z(4430) and Z1(4050) & Z2(4250)

  6. Reconstruction of B decays • In (4S) decays B are produced almost at rest. • ∆E = Ei - ECM/2Signal peaks at 0. • Mbc = { (ECM/2)2 - (Pi)2}1/2Signal peaks at B mass (5.28GeV). B0J/ KS ∆E, GeV Mbc, GeV

  7. CP X(3872) B→Xsγ 479 Belle citation count 451 330 Phys.Rev.Lett.91262001, (2003) 6th anniversary!

  8. Swanson, CharmEx09

  9. pp collisions PRL91,262001 (2003) X(3872) was observed by Belle in ′ B+ → K+ X(3872) → J/ψπ+π- X(3872) Confirmed by CDF, D0 and BaBar. …recent signals of X(3872) → J/ψπ+π- B+ → K+ X(3872) PRL103,152001(2009) PRL93,162002(2004) arXiv:0809.1224 PRD 77,111101 (2008)

  10. Mass & Width M = 3871.550.20 MeV,Γ < 2.3 MeV (90% C.L.) Close to D*0D0 threshold: m = -0.250.40 MeV.

  11. Branching Fraction PRL96,052002(2006) B K Xcc studied using missing mass technique. reconstructed K Xcc B missing mass (4S) reconstructed B 90%C.L. Br(X(3872)  J/+ -) > 2.5%

  12. Radiative Decays & J/ hep-ex/0505037 J/  CX = +1 PRL102,132001(2009) ′ J/ m (J/), MeV m (′), MeV Evidence for X(3872) → J/+-0 hep-ex/0505037 M(+-0) is peaked at kinematic boundary subthreshold production of  +-0 also CX = +1

  13. +- system from X(3872)  J/+- B(X(3872)  J/) B(X(3872)  J/) ~1 CX = + C(+-) = – (|+1,-1– |-1,+1) ( r ) Isospin (+-) = 1 L(+-) = 1 +- system has IJPC quantum numbers of 0. Mass of +- PRL96,102002(2006) hep-ex/0505038 L=0 L=1 M (+-) is well described by 0→+- (CDF: + small interfering →+-).  Large isospin violation.

  14. Spin & Parity PRL98,132002(2007) Angular analyses by Belle and CDF excluded JP = 1++ 0++, 0+-, 0-+,1-+ ,1+-, 1--, 2++, 2-- , 2+-, 3--, 3+- 2-+ 1-- 0++ Only two possibilities JP =1++ and 2-+. 2-+ is disfavored by Observation of D*D decay  centrifugal barrier at the threshold Br(X → ′ γ) / Br(X → J/γ) ~3multipole suppression 1++ are favorite quantum numbers for X(3872) 2-+ is not excluded.

  15. B K D0D*0 D*→Dγ PRL97,162002,2006 6.4σ D*→D0π0 605 fb-1 B K D0D00 1.4σ PDG Flatte vs BW similar result: 8.8σ New Belle vs. BaBar: ~2σ difference PRD77,011102,2008 B+& B0D0D*0K 4.9σ 347fb-1 arXiv:0810.0358 X(3875)  X(3872)?

  16. X(3872) Experimental Summary Br(X  D*0D0) Br(X  J/+-) ~10 JPC = 1++ (2-+ not excluded) MJ/ = 3871.550.20 MeV Γ < 2.3 MeV (90% C.L.) Close to D*0D0 threshold: m = -0.250.40 MeV. Decay modes: Br(X(3872)  J/0) > 2.5% J/ J/ J/  D*0D0 0.14  0.05

  17. Interpretation: Charmonium? 3872 JPC = 1++c1′ (23P1) • Γ (c1′→ J/ψγ) / Γ (c1′→ J/ψπ+π-) • expect 30 • measure 0.140.05 JPC = 2-+ηc2 (11D2) Expected to decay into light hadronsrather than into isospin violating mode.  X(3872) is not conventional charmonium.

  18. Tetraquark? PRD71,031501,2005 B0 B- X(3872)– X(3872)– M(J/π–π0) M(J/π–π0) PRD71,014028(2005) Maiani, Polosa, Riquer, Piccini; Ebert, Faustov, Galkin; … [cq][cq] Charged partners of X(3872) should exist. Two neutral states ∆M=(83)MeV,one populate B+ decay, the other B0.  No evidence for X–(3872)  J/–0 excludes isovector hypothesis

  19. B0 vs. B+ B0→XK0s 5.9 M(J/) arXiv:0809.1224 605 fb-1 PRD 77,111101 (2008) [413 fb-1] = (2.7 ± 1.6 ±0.4) MeV 2.3σ M(J/) No evidence for X(3872) neutral partner in B0 decay.

  20. Two overlapping peaks in J/+- mode? PRL103,152001(2009) No evidence for two peaks m < 3.2 MeV at 90% C.L. Tetraquarks are not supportedby any experimental evidence for existence of X(3872) charged or neutral partners.

  21. March 1976 MX = 3871.55  0.20 MeV (MD*0 + MD0) = 3871.80  0.35 MeV BES III can improve on this November 1976 D0D*0 molecule? Swanson, Close, Page; Voloshin; Kalashnikova, Nefediev; Braaten; Simonov, Danilkin ... m = -0.250.40 MeV Weakly bound S-wave D*0D0 system D*0D0 molecule can reconcile X(3872) signals in D*0D0 and J/+- modes. Bound state Virtual state D0D00 If EX goes positive … J/+- D0D00 J/+- D*0D0

  22. B(X(3872)  J/) B(X(3872)  J/) ~1 B(X(3872) ) B(X(3872)  J/) ~3 D0D*0 molecule Large isospin violation due to 8MeV differencebetween D*+D- and D*0D0 thresholds. Similar ratio is expected for c1 decays c1 admixture? Large production rate in B decays and at TEVATRON c1? Bound or virtual? c1 admixture? Analysis of data Yu.S.Kalashnikova, A.V.Nefediev arXiv:0907.4901 Belle data: bound state with ~ 30% admixture of c1. BaBar : virtual state with ~ no c1 admixture. ~2 difference  Present statistics is insufficient to constrain theory?

  23. There are other similar analyses which differ in the fit functions: Braaten, Stapleton Zhang, Meng, Zheng arXiv: 0907.3167 0901.1553 Steve Olsen “Charmed Exotics 2009”  theorists here should agree on the proper form & then experimenters should use it in a proper unbinned fit

  24. B  K  X(3872) ~90 events arXiv:0809.1224 605 fb-1 Very weak K*(892) bg signal Br(BJ/ K*0) Br(BJ/ KNR) ~4

  25. DD* molecular models for the X(3872) attribute its production & decays  charmonium to an admixture of c1′ in the wave fcn. But BKX(3872) is very different from BK charmonium. KX3872 Kc1 K′ Belle arXiv 0809.0124 Belle arXiv 0809.0124 Belle PRD 74 072004 M(K) M(K) KJ/ Kc M(K) Belle F.Fang Thesis BaBar PRD 71 032005 M(K) M(K)

  26. States near 3940 MeV

  27. The states near 3940 MeV-circa 2005- Z(3930) X(3940) Y(3940)  DD e+e- J/ DD* BKJ/ Probably the c2’ M(J/) M(DD) M(DD*) M = 3929±5±2 MeV tot = 29±10±2 MeV Nsig =64 ± 18evts M≈3940 ± 11 MeV ≈ 92 ± 24 MeV M = 3942 +7± 6 MeV tot = 37 +26 ±12 MeV Nsig =52 +24 ± 11evts -6 -15 -16 PRL 96, 082003 PRL94, 182002 (2005) PRL 100, 202001

  28. Y(3940)  DD* ? BKDD* 3940 MeV 3940 MeV

  29. X(3940)J/? e+e-J/ + ( J/) PRL 98, 082001

  30. X(3940) ≠ Y(3940) @ 90% CL

  31. Y(3940) confirmed by BaBar B±K±J/ B0KSJ/ ratio J) PRL 101, 082001 Some discrepancy in M & ; general features agree

  32. Belle-BaBar direct comparison Same binning (Belle published result : 253 fb-1) 492fb-1 Belle will update with the complete (4S) date set later this Fall

  33. Y(3915)J/ from Belle M: 3914  3  2MeV, : 23  10 +2-8 MeV, Nres = 55  14 +2-14 events Signif. = 7.7, 7.7 preliminary Probably the same as the Belle/BaBar Y(3915)

  34. cc assignments forX(3940) & y(3915)? _ c’’’ c” c0’ 3940MeV 3915MeV • Y(3915) = co’? (J/) too large? • X(3940) = c”?  mass too low?

  35. Z(4430) and Z1(4050) & Z2(4250) Smoking guns for charmed exotics: u c c d

  36. BK ’ (in Belle) M2(+’) ?? K*(1430)K+-? K*(892)K+- M2(K+-)

  37. The Z(4430)± ±’ peak BK+’ evts near M(’)4430 MeV M() GeV M2(±’) GeV2 Z(4430) M(±’) GeV   M2() GeV2 “K* Veto”

  38. Shows up in all data subsamples

  39. Could the Z(4430) be due to a reflection from the K channel?

  40. Cos  vs M2(’)   ’ K +1.0 22 GeV2 (4.43)2GeV2 0.25 M2(’) cos 16 GeV2 -1.0 M (’)& cosare tightly correlated; a peak in cos peak in M(’)

  41. S- P- & D-waves cannot make a peak (+ nothing else) at cos≈0.25 not without introducing other, even more dramatic features at other cos (i.e., other M’) values.

  42. But…

  43. BaBar doesn’t see a significant Z(4430)+ “For the fit … equivalent to the Belle analysis…we obtain mass & width values that are consistent with theirs,… but only ~1.9s from zero; fixing mass and width increases this to only ~3.1s.” Belle PRL: (4.1±1.0±1.4)x10-5

  44. Reanalysis of Belle’s BKpy’ data using Dalitz Plot techniques

  45. 2-body isobar model for Kpy’ Our default model K*y’ B K2*y’ Kpy’ KZ+

  46. Results with no KZ+ term 2 1 3 1 2 4 5 C B A 3 4 A B 5 C fit CL=0.1% 51

  47. Results with a KZ+ term 2 1 B 2 3 4 5 A 1 3 4 C B C A 5 fit CL=36%

  48. Compare with PRL results K* veto applied With Z(4430) Signif: 6.4s Published results Without Z(4430) Mass & significance similar, width & errors are larger BaBar: Belle: = (3.2+1.8+9.6 )x10-5 0.9-1.6 No big contradiction

  49. Variations on a theme Z(4430)+ significance Others: Blatt f-f term 0r=1.6fm4fm; Z+ spin J=0J=1; incl K* in the bkg fcn

  50. The Z1(4050)+ & Z2(4250)+p+cc1 peaks PRD 78,072004 (2008)

More Related