270 likes | 402 Views
제 4 회 부산대학교 생물학과 학술제. Mobile Genetic Element. Nonviral Retroposon LINE Element. 지도 교수 : 김 희 수 교수님 발 표 자 : 문 요 섭 참 가 자 : 김 영 균 , 윤 성 용. Retrovirus (HIV). Receptor binding proteins. Lipid envelope. RNase. Viral RNA. Capsid : core proteins. Major Groups of Retroviruses.
E N D
제 4 회 부산대학교 생물학과 학술제 Mobile Genetic Element Nonviral Retroposon LINE Element 지도 교수 : 김 희 수 교수님 발 표 자 : 문 요 섭 참 가 자 : 김 영 균, 윤 성 용
Retrovirus (HIV) Receptor binding proteins Lipid envelope RNase Viral RNA Capsid : core proteins
Genomic Structure of Retrovirus Coding region LTR LTR Integrated retroviral DNA U3 R U5 U3 R U5 Host-cell DNA Poly(A) site Start site RNA polymerase II Primary transcript 5` 3` RNA-processing enzymes Poly(A) polymerase Retroviral RNA genome (A)n
Generation of LTR R U5 tRNA 3` 5` tRNA Genimic RNA (A)n 5` 3` PBS R U5 Coding region U3 R DNA 3` tRNA extended R U5 tRNA to form DNA copy (A)n 3` 5` R U5 PBS Coding region U3 R Hybrid RNA removed (A)n PBS Coding region U3 R 3` R U5 tRNA First jump (A)n PBS Coding region U3 R 3` tRNA U3 R U5 DNA strand extended from 3` end PBS Coding region U3 R (A)n
Must hybrid RNA removed tRNA PBS U3 R U5 3` 5` 5` 3` 3` tRNA U3 R U5 3` end of second DNA strand 5` synthesized 3` PBS U3 R U5 5` 3` U3 R U5 Remaining hybrid RNA and tRNA removed 3` PBS U3 R U5 3` 5` U3 R U5 Second jump 3` PBS 5` U3 R U5 3` U3 R U5 5` Both strands completed by 5` 3` PBS U3 R U5 synthesis from Retroviral DNA LTR 3` ends LTR
Replication Mechanism of Retrovirus Absorption to Specific Receptor Endocytosis Reverse transcription Provirus DNA Transport to nucleus Double strand of DNA Translation Transcription mRNA Nuclear membrane Assembly Cytoplasm Release Budding
Mobile Elements in Mammalian Genome D D E P ORF1 ORF2 Poly(A) TTTT Poly(A) Class Example Structure Mechanism Transposase ‘cut’ or ‘copy and paste’ Transposon mariner Autonomous Retrotransposons Truncated HERVs LTR-containing Retroviral-like LTR ORF1 ORF2 LTR Target primed reverse transcription(TPRT) Non-LTR L1 EN RT R-Alu L-Alu Non-autonomous Alu TPRT? terminator retrotransposons A-rich linker Processed pseudogene TPRT?
Mechanism of L1 Retrotransposon P ORF1 ORF2 Poly(A) EN RT AAAAn AAAAn Integration of truncated L1 at new chromosomal site Cytoplasm Nucleus Poly(A) Target primed reverse AAAAA transcription(TPRT) Transcription processing 3`OH-TTTTT 5` mRNA export ORF2 5` Import or entry during mitosis ORF2 5` AAAAn Transcription and ORF2 ORF2 RNP assembly; p40 Post-translational 5` modification p40
Retroelement RNA intermediate - LTR element + LTR element Retroposon - env + env Retrotransposon - RT + RT LTR ORF1 ORF2 LTR SINE Yeast Ty1/copia/truncated HERVs P Poly(A) LTR LTR Human Alu Human THE1 Retrovirus LINE LTR gag pol env LTR P ORF1 ORF2 Full-length HERVs/exogenous retrovirus Poly(A) L1
Transposon & Retrotransposon Insertion sequence or transposon Retrotransposon Donor DNA Donor DNA Flanking DNA RNA polymerase RNA intermediate Reverse transcriptase DNA intermediates Target DNA Transposed mobile element
Non-LTR Retro-element LTR ORF1 ORF2 LTR P Poly(A) LTR LTR Human Alu LTR gag pol env LTR P ORF1 ORF2 Poly(A) L1 Retroelement RNA intermediate - LTR element + LTR element Retroposon - env + env Retrotransposon - RT + RT SINE Yeast Ty1/copia/truncated HERVs Human THE1 Retrovirus LINE
Evolution & Phylogeny of Non-LTR Retrotransposable Element CLADE 100 CRE RT 100 R2 RT 98 R4 RT 90 L1 APE RT 99 APE RTE APE RT RT 98 APE RT Tad APE RT RNH 82 82 99 APE RT R1 APE RT RNH 100 LOA APE RT RNH 100 76 APE RT RNH I RNH APE RT RNH 100 Jockey APE RT 100 56 CR1 APE RT 250 aa
Structure of LINE Element ~ (~1 kb) ORF1 ~ (~4 kb) ORF2 3` 5` 5` 3` A/T-rich region Multiple stop codons Target-site direct repeat Coding region (~1 kb) ~
Synthesis of L1 LINE Element 3` 5` AAAAAAAAA TTTTTT TTTTTTTTTT AAAAAA 5` 3` L1 element Flanking DNA 1) An RNA polymerase transcribes bottom strand AAAAAAAAA UUUUUU 5` 3` 2) RNA fold back on itself with Us and As hybridizing 3) 3` end primes synthesis of DNA from RNA template by L1 reverse transcriptase AAAAAAAAA 5` 3` TTTUUUUUU cDNA 4) cDNA serves as template for synthesis of double-stranded L1 DNA 5) Unknown mechanism insert L1 element into cellular DNA
Retroposon Model of L1 Movement SDR Inserted functional L1 ORF1 ORF2 Transcription L1 mRNA A(n) 5` 3` ORF-2 product DNA/RNA hybrid + Target site ??? Transposed 5` truncated L1 New SDR
Various Model for L1 Element (A)n 3` 5` (T)n 5` 5` 3` L1 RNA 3` 3` ORF-2 RTase (A)n 3` (A)n 5` 5` 5` Repair synthesis cDNA (T)n 3` (T)n 5` RNAase H 3` (T)n 5` (A)n 3` 5` 3` S.S. nuclease (partial) Random priming Integration (T)n 5` (T)n 3` 5` (A)n 3` (A)n 5` 3` S.S. nuclease (nick) Inverted segment (T)n 3` 5` 5` Inverted/deleted L1 5` Repair synthesis S.S. nuclease (complete) (A)n 3` 3` (T)n 3` (T)n 5` 5` 5` (A)n 5` 3` (A)n 3` Integration Integration (T)n (T)n 3` 5` 3’` 5` 5` (A)n 5` (A)n 3` 3` Inverted segment 5` Truncated L1 5` Inverted L1
Genomic Diversity by L1 LINE Element ORF1 ORF2 An An C EN RT Transduction An An An An An
Promoter Arrays & L1 Transposon Parental L1Md element 208 bp repeats SDR 4 2/3 copies ORF-2 (A)n ORF-1 SDR 3 2/3 2 2/3 mRNAs 1 2/3 2/3 Functional progeny L1Md element + Non-functional progeny L1Md element
Comparative Analysis of L1Md & L1Hs ORF-1 5`UTR 3`UTR (A)n ORF-2 L1Md ORF-2 ORF-1 (A)n 5’UTR L1Hs 3’UTR
Common 3` Sequence of LINE & SINE SINE tRNA-related region tRNA-unrelated region LINE 3` 5` 5` 3` 3` 5` 3` 5` Transcription Transcription LINE-derived region 5` 5` 3` 3` Transcript Transcript Reverse transcriptase Translation Recognition of the 3’-end sequence 5’ 3` 5` 3` Synthesis of cDNA Synthesis of cDNA 3` 3` 5` 5` 3` 5` 3` 5` New integration site New integration site
Function of LINE Elements 1. Various Diseases 2. Evolutionary Change 3. Diversity & Phylogeny