1 / 23

Change Detection on Point Cloud Data Acquired with a Ground Laser Scanner

Change Detection on Point Cloud Data Acquired with a Ground Laser Scanner. D. Girardeau-Montaut 1,2 , M. Roux 1 , R. Marc 2 , G. Thibault 2 1 Telecom Paris 2 Eléctricité de France R&D. Contents of presentation. Goals Constraints Comparison process distance computation sampling correction

ogrady
Download Presentation

Change Detection on Point Cloud Data Acquired with a Ground Laser Scanner

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Change Detection on Point Cloud Data Acquired with a Ground Laser Scanner D. Girardeau-Montaut1,2, M. Roux1, R. Marc2, G. Thibault2 1 Telecom Paris2 Eléctricité de France R&D ISPRS workshop Laser Scanning 2005 - Enschede, the Netherlands - September 12-14

  2. Contents of presentation • Goals • Constraints • Comparison process • distance computation • sampling correction • visibility management • Conclusion & future work D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  3. Goals • Geometry comparison between two epochs day 1 day 2 day 3 day 4 D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  4. Goals • … or between two states D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  5. Constraints In both cases : • millions of points (up to 30M) • very partial coverage of objects • different points of view (P.O.V.) + important time constraints D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  6. Common comparison technique • Cloud-to-model comparison [Cignoni et al. 1998] • fast & simple (only point-triangle distances) comparison timing : 25,4 s. (3 millions points / 13800 triangles) • Can always be used: • two models  sampling points on one of them • two clouds  meshing at least one of them D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  7. Our case We work only with ground based LiDAR data.  in order to use the common technique we should model at least one of the point cloud ! Several (big) issues: • memory usage • hazardous results if done automatically • very slow D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  8. Our idea • to compare point clouds directly We use a local distance between clouds: S S’ « nearest neighbour » distance  ~ Hausdorff distance D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  9. Octree structure Hausdorff distance complexity: ~O(N2)  Octree: recursive subdivision of space (in 8 cubes) • Comparing to a mesh : • much faster construction • less memory space used • but a slower neighbourhood extraction speed • no surface  no normals D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  10. Hausdorff distance computation • With octree: almost linear Test on two scans of a house mockup: 2 clouds, 650 000 points each  distance computation : 2,4 s. D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  11. Hausdorff distance problems Several problems: • dependant on point sampling • always associate a point with another while it not always a « good idea » … D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  12. Point sampling correction 2 to 5 times slower D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  13. Points visibility problem S1 T1 A B C S2 T2 distance (S2/S1) Comparison x real « change » area hidden area at T1(high distances, but no change) D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  14. Field example day 1 day 2 / day 1 day 2 D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  15. Y x   Filtering with depth maps equivalent to a common 3D graphicalstructure named« Z-Buffer » D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  16.  Using depth maps to determine points visibility DM P=(P,P,Pz) If P  DM P is out of f.o.v. If P  DM Pz < DM(P,P) P is visible P is invisible Pz DM(P,P) Pz > scanner range P is out of range D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  17. Filtering operation result day 1 day 2 simple Hausdorff distances filtered distances D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  18. Multiple P.O.V. case D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  19. Over-filtering issue well filtered area: lack of information in the other cloud (no change) over-filtered area (true change)  we have to use recovering strategies for over filtered areas D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  20. Segmentation • 3D C.C. extraction (octree ~ 3D grid) • still a manual process (distance threshold) comparison with database objects, other subsets of points, etc. D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  21. Conclusion & perspectives • Dense lidar point clouds can be used efficiently “as is” for direct comparison • The whole comparison process presented here is fast and accurate But it could be faster and easier : • the segmentation process should be automatic (work in progress) • the software could be linked directly with the sensor D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  22. Questions ? D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

  23. D. Girardeau-Montaut, M.Roux, R. Marc, G. Thibault

More Related