1 / 35

Nonlinear evolution for Pomeron fields in the semi classical

Nonlinear evolution for Pomeron fields in the semi classical. C. Contreras , E. Levin J. Miller* and R. Meneses Departamento de Física - Matemática Universidad Técnica Federico Santa María Valparaiso Chile *Lisboa Portugal SILAFAE 2012 Sao Paulo Brasil. O utlook.

olathe
Download Presentation

Nonlinear evolution for Pomeron fields in the semi classical

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nonlinear evolution for Pomeronfields in the semi classical C. Contreras , E. Levin J. Miller* and R. MenesesDepartamento de Física - Matemática Universidad Técnica Federico Santa María Valparaiso Chile *Lisboa Portugal SILAFAE 2012 Sao Paulo Brasil

  2. Outlook • Introduction • BFKL PomeronCalculus and RFT • Semiclassicalapproximation • Solutioninsidethesaturationregion • Application and Conclusion

  3. Introduction • High EnergyScattering • DifractiveScattering and DIS : Pomeronexchange • h-h h-NucleusCollision: dilute/dilute - dense sistema • Nucleus - NucleusCollision Dense-Dense systems

  4. Scatteringapproach • d=2 tranversespace • saturación regionQs >> C are smallthenwe can considerthat semiclasicasapproach are valid

  5. Description in QCD • The interactionbetweenparticlesisviainterchange of Gluons: Color Singlet BFKL Pomeron Balinsky-Fadin-Kuraev-Lipatov • Theamplitude can be described considering a Pomeron Green Function BFKL propagator SeeLipatov “ Perturbative QCD”

  6. Where Dipole the wave function hep-th/0110325 • Approximation r, R << b then it is independent of b impact parameter

  7. Balitsky-Fadin-Kuraev-Lipatov BFKL equation describe scattering amplitud in High Energyusing a resumation LLA in pQCD (76-78) • BFKL evolutionequationwithrespecttoln x , which are representedby a set of Gluon ladders • Intuitive Physical Picture: BFKL difussion in the IR region: gluon radiation g -> gg in thetransversemomentumktexistlargenumber of gluons but forsmallkt and largesize of gluon and strongyoverlap fusiongg –> g are important Saturationphenomena

  8. Experimental evidence in small-x

  9. Approchtosaturation First: Modification of the BFKL 1983 GLR Gribov, Levin and Ryskin 1999 BK Balisky- Kovchegov: includequadratictermsdeterminedbythreePomeronVertex BK eq. evolution for Amplitude N(r,b,Y)

  10. See hep.ph 0110325 • BK equation DIS virtual photon on a large nucleus LLA • Dipole approximation: photon splits in long before the interaction with nucleus degrees of freedoms • The dipole interacts independently with nucleons in the nucleus via two-gluon exchange

  11. Approchtosaturation II Color GlassCondensate CGC Clasiccalfieldfor QCD withWeizsacker-Williams generalized Field Muller and Venogapalan JIMWLK / KLWMIJ Equation J. Jalilian-Marian, E. Iancu, Mc Lerran, H. Weiger, A. Leonidovt and A. Kovner RenormalizationGroupApproach in the Y-variable

  12. GeneralizationtoPomeronesInteraction • 1P  2P • 2P 1P • Loop de Pomerones

  13. Pomeron Loops: See E. Levin, J. Miller and A PrygarinarXiv 07062944 For example: See Quantum Chromodynamic at High Eneregy Y. Kovchegov and E. Levin Cambridg 2011 • BK resums the fan diagrams with the BFKL ladders Pomeron splitting into two ladders (GLR-DLA) • Loops of Pomeron are suppresed by power of A atomic number of the nucleus A

  14. QCD results and effectiveaction • Green Function • Definition of a Field Theory RFT See M. Braun or E. Levin

  15. Funcional Integral Braun ´00-06

  16. Interaction with nucleus target / projectile

  17. Solutions: momentumrepresentation

  18. Equations and definitions Thisequationisequivalentto: • BFKL if • BK

  19. SemiclasicalApproach

  20. equations • Solution: Characteristicamethod

  21. Using the relation BFKL Pomeron L. Gribov, E. Levin and G. RyskinPhy. Rep. 100 `83 • One can show that • And that

  22. We introduce • And we use de condition

  23. Solution

  24. NumericalSolution • Expandingaround

  25. Conclusion • Physical Condition to select solution • Extension to Y dependence • AplicationtoScatteringdilute-Dense Nucleus • Applications: Scattering amplitude • In a more refined analysis the b dependence should be taken into account • Running coupling effects sensitivity to IR region and landau Pole! • Solution in another regions

  26. Preliminary Result

  27. Kinematic Variables • Q  resolutionPower • X  measure of momentumfraction of struck quark • F(x,Q)

  28. General Behaviour • Bjorken Limites DGLAP • Regge Limite

More Related