1 / 19

Game Theoretical Insights in Strategic Patrolling: Model and Analysis

Game Theoretical Insights in Strategic Patrolling: Model and Analysis Nicola Gatti – ngatti@elet.polimi.it DEI, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy. Topic, Results, and Outline. Topic

oleg
Download Presentation

Game Theoretical Insights in Strategic Patrolling: Model and Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Game Theoretical Insights in Strategic Patrolling: Model and Analysis Nicola Gatti – ngatti@elet.polimi.it DEI, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy

  2. Topic, Results, and Outline • Topic • Study of strategic models for capturing patrolling situations in presence of opponents • Main results • Modeling result: • Problems in the current state-of-the-art • Proposal of an alternative model • Computational result: • Exploitation of game theoretical analysis for reducing the solving algorithm complexity • Outline • Strategic patrolling state-of-the-art • Proposal of an alternative model • Towards integration between game theoretical analysis and algorithmic game theory • Conclusions and future works

  3. Game Theory Groundings for Strategic Patrolling • Definition of game • Protocol: rules of the game (e.g., number of players, sequential structure, available actions) • Strategic-form games: the players act simultaneously (e.g., rock-paper-scissors) • Extensive-form games: the players act according to a given sequential structure (e.g., chess) • Strategies: players’ behavior in the game • Solution: a strategy profile σ = (σ1, …, σn) that is somehow in equilibrium • Nash equilibrium: the players act simultaneously without meeting themselves before playing the game [Nash, 1950] • Leader-follower equilibrium: a player can commit to a specific strategy and the follower acts on the basis of the commitment [von Stengel and Zamir, 2004]

  4. von Neumann’s Hide-and-Seek Game S 1 2 3 H 4 5 6 S H 7 8 9 H

  5. Paruchuri et al.’s Strategic Patrolling (1) 1 G 2 3 4 5 6 7 8 9 R

  6. Paruchuri et al.’s Strategic Patrolling (2) • Assumptions: • Time is discretized in turns • Time needed by the guard to patrol one area is exactly 1 turn • Time needed by the guard to move between two areas is negligible with respect to time needed to patrol an area • Time needed by the robber to rob an area is d turns • The robber can observe the strategy of the guard • Game protocol: • Two–player: • Guard • Robber • General–sum: each player assigns each area and the robber’s caught a value • Strategic–form: the players act simultaneously • Actions: • Guard: a route of d areas, e.g. <1, 2, …, d> • Robber: a single area

  7. Paruchuri et al.’s Strategic Patrolling (3) • Solution concept: leader-follower equilibrium • Strategies: the guard randomizes over a portion of the actions, while the robber follows a pure strategy • Multiple types: the payoffs of the robber could be known with uncertainty by the guard • By Harsanyi transformation: the robber can be of different types (each type has a specific payoff) according to a given probability distribution • Solving algorithms: • Multi Linear Programming [Conitzer and Sandholm, 2005] • Mixed Integer Linear Programming [Paruchuri et al., 2008]

  8. Problems in Paruchuri et al.’s Strategic Patrolling (1) • A simple setting • 3 areas • 1 type • Two turns are needed by the robber to rob an area (d=2) • Each player has the same evaluations over the areas

  9. Problems in Paruchuri et al.’s Strategic Patrolling (2) Guard’s optimal strategy (.16 <1,2>, .16 <2,1>, .16 <1,3>, .16 <3,1>, .16 <2,3>, .16 <3,2>) G realization <3,1> realization <1,2> 1 G 2 3 G R The robber’s expected utility is -.33 R Robber’s optimal strategy (2)

  10. Problems in Paruchuri et al.’s Strategic Patrolling (2) Guard’s optimal strategy (.16 <1,2>, .16 <2,1>, .16 <1,3>, .16 <3,1>, .16 <2,3>, .16 <3,2>) G realization <1,2> realization <3,2> 1 G 2 3 G R The robber’s expected utility is .33 R

  11. Problems in Paruchuri et al.’s Strategic Patrolling (3) • The model by Paruchuri et al. does not consider all the possible implications due to the observation of the robber • According to the assumption of observation, the robber can enter an area when the guard is patrolling and not exclusively when the guard starts to patrol a route

  12. An Alternative Strategic Patrolling Model • The “natural” model is an extensive-form game wherein • Guard: the next area to patrol • Robber: the area to enter or wait • In this work we search for a strategic-form model alternative to Paruchuri et al.’s model • The proposed model is a strategic-form model wherein • Guard: the next area to patrol • Robber: the area to enter and the guard’s strategy will be the same at each turn • In this way the robber cannot improve its expected utility by waiting • In this model no “consistency“problem there is (the proof can be found in the paper)

  13. Searching for a Nash Equilibrium • We use the strategic patrolling as case study for the integration of game theoretical analysis and algorithmic game theory • Idea • Game theoretical analysis allows one to derive some insights • Singularities: some strategy profiles are never of equilibrium independently of the values of the parameters (payoffs) • Regularities: some strategy profiles are of equilibrium with a probability higher than others • These insights can be exploited to improve searching efficiency and to make hard problems affordable

  14. One Robber Type Analysis • Proposition 1: Independently of the number of the robber’s types, at the equilibrium the guard will randomize over all the possible actions • On the basis of Proposition 1, except for a null-measure subspace of the parameters, with one type of robber the Nash equilibrium: • Is unique, and • Prescribes that both the guard and the robber will randomize over all their available actions • In this case the Nash equilibrium can be computed in closed form as a single problem of linear programming

  15. More Robber Types Analysis (1) • With more types, the equilibrium cannot be computed in closed form • Anyway, game theoretical insights can be exploited to reduce the complexity of the search • Searching in the space of the supports • A complete method for searching a Nash equilibrium is to enumerate all the possible strategy supports and check them one by one (A strategy support is the set of actions over which agents randomize with a strict positive probability) • Anyway, such a space rises exponentially in the number of players’ actions and then heuristics are needed • [Porter et al., 2005] provides some heuristics for ordering the supports and shows that their approach is more efficient than Lemke-Howson algorithm

  16. More Robber Types Analysis (2) • By Proposition 1, the support of the guard will be the whole set of actions • The supports of all the robber’s types can depict as a matrix M = • By game theoretical analysis we can: • Reduce the space of the matrices M • Produce an ordering where the first Ms are the most probable to lead to an equilibrium

  17. Experimental Results • We have studied random settings with 4, 5, 6, 7 areas and different number of robber’s types • Our approach outperforms Porter et al. approach in term of computational time, dramatically reducing the space of the search • Our approach outperforms Multi-LP algorithm, although the computation of a Nash equilibrium is harder than the computation of a leader-follower equilibrium

  18. Conclusions and Future Works • Conclusions • Analysis of state-of-the-art model of strategic patrolling • Proposal of a strategic model in normal-form • Attempt to exploit game theoretical analysis to improve the algorithm efficiency • Future works • Patrolling models and solving algorithms • Exploiting game theoretical analysis in algorithmic game theory

  19. Thank you for your attention!

More Related