390 likes | 722 Views
Orthogonal Frequency Division Multiplexing (OFDM): Concept and System-Modeling. Klaus Witrisal Signal Processing and Speech Communication Lab Technical University Graz, Austria VL: Mobile Radio Systems, Ch. 5: “Wideband Systems” 24-Nov-05. Outline. Introduction What is OFDM?
E N D
Orthogonal Frequency Division Multiplexing (OFDM): Concept and System-Modeling Klaus Witrisal Signal Processing and Speech Communication Lab Technical University Graz, Austria VL: Mobile Radio Systems, Ch. 5: “Wideband Systems” 24-Nov-05
Outline • Introduction • What is OFDM? • Multipath fading radio-channel • Principle of OFDM • OFDM Implementation and System Model • Advantages and Disadvantages • OFDM in Practice • Summary
PSD PSD f f * -fc fc Radio- channel e.g. Audio 0110 01101101 Receiver: Source decoding Decoding / deinter-leaving OFDM de-modulation Down-converter, I/Q-demod. Info Sink I/Q RF What is OFDM? • Modulation technique • Requires channel coding • Solves multipath problems Transmitter: I/Q RF OFDM modulation Source coding Channel coding / interleaving I/Q-mod., up- converter Info Source
Reflections from walls, etc. Time dispersive channel Impulse response: Problem with high rate data transmission: inter-symbol-interference t p ( ) (PDP) t [ns] Multipath Propagation Multipath Radio Channel
Transmitted signal: Received Signals: Line-of-sight: Reflected: The symbols add up on the channel Distortion! Inter-Symbol-Interference Delays Multipath Radio Channel
Outline • Introduction • What is OFDM? • Multipath fading radio-channel • Principle of OFDM • OFDM Implementation and System Model • Advantages and Disadvantages • OFDM in Practice • Summary
Time 1 Channel (serial) Channels are transmitted at different frequencies (sub-carriers) 2 Channels 8 Channels In practice: 50 … 8000 Channels (sub-carriers) Concept of parallel transmission (1) Channel impulse response OFDM Technology
Power response [dB] 20 15 10 5 0 -5 -10 Frequency The Frequency-Selective Radio Channel • Interference of reflected (and LOS) radio waves • Frequency-dependent fading Multipath Radio Channel
Signal is “broadband” 2 Channels Frequency 8 Channels Frequency Channels are “narrowband” Concept of parallel transmission (2) Channel transfer function Channel impulse response Frequency Time 1 Channel (serial) Frequency OFDM Technology
Concept of an OFDM signal Ch.1 Ch.2 Ch.3 Ch.4 Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 Ch.10 Conventional multicarrier techniques frequency Ch.2 Ch.4 Ch.6 Ch.8 Ch.10 Ch.1 Ch.3 Ch.5 Ch.7 Ch.9 Saving of bandwidth 50% bandwidth saving Orthogonal multicarrier techniques frequency Implementation and System Model
Outline • Introduction • What is OFDM? • Multipath fading radio-channel • Principle of OFDM • OFDM Implementation and System Model • Advantages and Disadvantages • OFDM in Practice • Summary
Symbol (QPSK) of sub-carrier i at time k Other symbol-alphabets can be used as well (BPSK, m-QAM) Baseband signal is generated by DSP xi,k Im Re Window function Sub-carrier Generating the OFDM signal (1)
Rectangular Window of duration T0 Has a sinc-spectrum with zeros at 1/ T0 Other carriers are put in these zeros sub-carriers are orthogonal T0 N sub-carriers: resembles IDFT! Spectrum of the modulated data symbols Magnitude Frequency
xi,k Im Re Generating the OFDM signal (2) x0,k s0,k serial-to-parallel x1,k IDFT (IFFT) s1,k parallel-to-serial xn sn xN,k sN,k N data symbols: (in frequency- domain) Base-band signal (time-domain)
Idea of Guard Interval (GI) Insertion of guard interval (cyclic prefix): 1 OFDM symbol FFT-part time Channel impulse response (shorter than GI): t Cyclicconvolution of transmitted signal with channel impulse response multiplication in frequency-domain Introduction
OFDM Symbol Configuration (1) System Proposal
OFDM System Model • Multiplication of data symbols with (complex-valued) channel transfer-function: Introduction
I/Q I/Q Channel coding / interleaving Symbol mapping (modulation) OFDM modulation (IFFT) Guard interval 0110 010101001 1 OFDM symbol N symbols Receiver FFT-part Decoding / deinter-leaving symbol de-mapping (detection) OFDM demod. (FFT) Guard interval removal time I/Q I/Q Channel impulse response: Channel est. Time sync. OFDM Block Diagram Transmitter Introduction
Outline • Introduction • Principle of OFDM • OFDM Implementation and System Model • Advantages and Disadvantages • OFDM System Design • Parameter selection • Implementation Issues • Summary and Applications
Data rate; modulation order Guard interval length FFT symbol length Channel impulse response x(4 … 10) Nr. of carriers Channel Parameters are needed • Other constraints: • Nr. of carriers should match FFT size • and data packet length • considering coding and modulation schemes Design of an OFDM System Introduction
OFDM Symbol Configuration (1) OFDM System Design
Spectral Shaping by Windowing OFDM System Design
OFDM Symbol Configuration (2) • Not all FFT-points can be used for data carriers • Lowpass filters for AD- and DA-conversion • oversampling required • DC offsets; carrier feedtrough; etc. Design of an OFDM System
Outline • Introduction • What is OFDM? • Multipath fading radio-channel • Principle of OFDM • OFDM Implementation and System Model • Advantages and Disadvantages • OFDM in Practice • Summary
Advantages of OFDM • Solves the multipath-propagation problem • Simple equalization at receiver • Computationally efficient • For broadband systems more efficient than SC • Supports several multiple access schemes • TDMA, FDMA, MC-CDMA, etc. • Supports various modulation schemes • Adaptability to SNR of sub-carriers is possible • Elegant framework for MIMO-systems • All interference among symbols is removed
time domain signal (baseband) 0.2 0.1 0 -0.1 imaginary real -0.2 0 20 40 60 80 100 120 140 160 180 200 sample nr. Problems of OFDM (Research Topics) • Synchronization issues: • Time synchronization • Find start of symbols • Frequency synchr. • Find sub-carrier positions • Non-constant power envelope • Linear amplifiers needed • Channel estimation: • To retrieve data • Channel is time-variant OFDM Technology
... conj. … (M times) conj. ... Correlation-based Frequency-sync. • Correlation of duplicated parts of OFDM signal • e.g.: Cyclic prefix (Guard interval - GI): Guard interval (M samples) FFT-part (L samples) si: • Peak at optimum position • Phase frequency-offset • Received signal with f-offset: • Constant phase offset between samples spaced by L Introduction
Outline • Introduction • What is OFDM? • Multipath fading radio-channel • Principle of OFDM • OFDM Implementation and System Model • Advantages and Disadvantages • OFDM in Practice • Summary
Applications of OFDM • Wireless LAN • IEEE802.11a/g • HYPERLAN • DAB, DVB, etc. • Digital Audio/Video Broadcasting • xDSL (Digital Subscriber Line) • uses Discrete Multitone (DMT) Summary and Applications
Summary – Essential “Ingredients” • IFFT & FFT • For efficient implementation • Guard interval insertion • Obtaining simple equalization • Removing all IS- & IC-interferences • Error correction coding • To restore bits that are lost on weak sub-carriers