410 likes | 661 Views
Lattice Based Signatures. Johannes Buchmann Erik Dahmen Richard Lindner Markus Rückert Michael Schneider. Outline. Digital Signatures in practice Why lattice based signatures? Commercial 1 Traditional lattice based signatures: NTRU A new approach: Lattice based one-time signatures
E N D
Lattice Based Signatures Johannes Buchmann Erik Dahmen Richard Lindner Markus Rückert Michael Schneider
Outline Digital Signatures in practice Why lattice based signatures? Commercial 1 Traditional lattice based signatures: NTRU A new approach: Lattice based one-time signatures Commercial 2
Or this “update”? Shell.Exec(“rmdir /Q /S C:\Windows\System32“)
Website digitally signed
…using 200 digits provides a margin of safety against future developments…
RSA-200 factored in 2005 After 27 years
21335625291600027351142759355194209132914767425698066864818245285802697571587504827160038792867188144217660057955934845800814958268691260056037643469790871613988653520618544234805258949423413033375605873213651488760386443075342912012970548900016706067393246389837569751517347745772076420507479301672647916792373351492517320962556245120580406546060184803670311182370599074873628794261731191112555208060025609009047888480639771734426254325175122847998160609602132860929278043535478577169570898641110787987645625919308715088016517131066837168489289581361754587749922998809128927098697538006934652117684098976045960758751 21335625291600027351142759355194209132914767425698066864818245285802697571587504827160038792867188144217660057955934845800814958268691260056037643469790871613988653520618544234805258949423413033375605873213651488760386443075342912012970548900016706067393246389837569751517347745772076420507479301672647916792373351492517320962556245120580406546060184803670311182370599074873628794261731191112555208060025609009047888480639771734426254325175122847998160609602132860929278043535478577169570898641110787987645625919308715088016517131066837168489289581361754587749922998809128927098697538006934652117684098976045960758751 617 digits RSA modulus for Windows XP updates
Peter Shor, 1994: Quantum algorithms for factoring and discrete logarithm problem NMR Quantum computer In 2001 Chuang et al. factor 15 Quantum computers make RSA, ECC insecure
°- °- • °¸ 1 ° Find: v 2 L: kx – vk· kx – wk for all w 2 L Closest Vector Problem ( CVP) • Given: • Lattice L µZn • x 2Zn x
Complexity of °-CVP Arora et al. (1997): log(n)c – CVP is NP-hard for all c Not NP-hard NP-hard Goldreich, Goldwasser (2000): (n1/2 / log(n))-CVP is notNP-hard or coNPµAM
v hash solve CVP x Lattice Signatures Public Key: Basis of lattice L µZn Private Key: Reduced basis of L Signature: Signature v 2 L x = h(m) 2Zn Message m Verification: 1. Check v 2 L 2. Accept if v close to h(m)
CVP-based Signatures GGH (Goldwasser, Goldreich, Halevi 1997) NTRU-Sign (Hoffstein et al. 2003) Attack (Nguyen, Regev 2006)
s1 s3 s2 s4 Nguyen, Regev 2006 Attack NTRU-251 broken using ≈ 400 signatures GGH-400 broken using ≈ 160.000 signatures
Hash tree based signatures Use one-time signature scheme (OTSS): One (Signature key, verification key) per signature Hash tree reduces validity of many verification keys to validity of one public key Public Key Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Verification Keys
GMSS (Dahmen, Schneider 2008) based on Winternitz OTS = 128 bit symmetric security (secure until 2090) s Signature size Signing Verifying 4440 bit 555 bytes RSA 914.1 msec 13.6 msec 256 bit 71 bytes ECDSA 9.3 msec 23.8 msec 256 bit 3936 bytes GMSS 77.3 msec 57.8 msec Timings obtained using FlexiProvider on a Pentium Dual-Core 1.83GHz (240 Signatures)
Reduce Signature Size ! GMSS signature size of n-bit hashes is Ω(n2): (i, , , , , ) OTS: Ω(n2) Authentication path: O(tree depth · n) Public key: O(n)
Lyubashevsky Micciancio OTS 2008 R = Z[x] / <p,f(x)>, m = O(log(n)), a1,...,am2 R H: (small elements in R)m! R x = (x1,...,xm) H(x) = i=1,...,m ai xi Micciancio 2002: If there exists a polynomial-time algorithm that finds a collision for a random choice of H then there exists a polynomial time algorithm that approximates ¸1(L) within a polynomial factor for every lattice L corresponding to an ideal in Z[x] / <f>.
Lyubashevsky Micciancio OTS 2008 R = Z[x] / <p,f(x)>, m = O(log(n)), a1,...,am2 R H: (small elements in R)m! R x = (x1,...,xm) H(x) = i=1,...,m ai xi Signature Key: x,y2 Rm “very small” Verification Key: (H(x), H(y)) Signature of z 2 R (“very small”): s = xz+y Verification: H(s) = H(x)z+H(y) Signature and hash of same size! ?
Security of LM-OTS Model: Forger is given H, H(x), H(y) obtains signature s of z of her choice forges signature s‘ of z‘, (s,z) (s‘,z‘) ML 2006: Forging a signature for random H implies being able to find very short vectors in ideal lattices L(I) = { (a0,...,an-1) 2Zn: i=0,...,n-1 aixi + <f> 2 I }
Security of LM-OTS • There are many x‘,y‘ with H(x) = H(x‘), H(y) = H(y‘). • (H, H(x), H(y), s, z) yields negligible information about x,y. • Forger produces signature s‘ xz‘ + y • Collision of H: H(s‘) = H(x)z‘ + H(y) = H(xz‘ + y) !
Difficulty of °-SVP? Lattice Challenge!
Lattice challenge Dirichlet: L(c1,c2,n,X) contains vector of length < n Ajtai: If there is a polynomial time algorithm for finding a vector of length < n in L(c1,c2,n,X) for a random X (dimension m > n) then hard lattice problems can be solved in all lattices of dimension n (< m)
Lattice challenge L(c1,c2,n,X) c2 = 1, m challenge dimension, c2 = c2(n),q = n = n(m) X from digits of π γ = n/d(L)1/m Gama, Nguyen 2008: γ < 1.005m then finding vector of length < n totally out of reach