1 / 49

Central Place Theory: Towards a Geography of Urban Service Centres

Central Place Theory: Towards a Geography of Urban Service Centres . Questions? Review Developing threshold and range into a spatial system of central places Hierarchical ordering principles. Spatial Demand Cone. Increasing real price. Market location. RANGE:

omer
Download Presentation

Central Place Theory: Towards a Geography of Urban Service Centres

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Central Place Theory: Towards a Geography of Urban Service Centres • Questions? • Review • Developing threshold and range into a spatial system of central places • Hierarchical ordering principles

  2. Spatial Demand Cone Increasing real price Market location RANGE: The spatial extent of demand before demand drops to zero

  3. Demand = zero

  4. Important definitions: • Threshold: • minimum DEMAND (volume of sales) needed for a business to stay in operation (and make a “normal” profit). • Range: • maximum distance over which a good can be sold from point P (i.e. where real price is low enough that people will travel to market to buy it) • Profit = R – T – really an excess profit • Threshold and range is the spatial basis for profit

  5. Implications of the RANGE Area of Extra Profit Min area required to stay in business (normal profits) Isotropic surface R M ? Unmet demand for same good or service T

  6. Implication of RANGE: • room for more than one producer of same good / service • where would producer locate? • > 2*R • avoiding overlap

  7. R R M M T T Implications of the RANGE Homogeneous plain 2R distance ? Unmet demand for same good or service

  8. R R R R R R R R R R R R R R R R R M M M M M M M M M M M M M M M M M T T T T T T T T T T T T T T T T T ? Unmet demand for same good or service

  9. R M T How can problem of interstitial areas of unmet demand be solved?

  10. R R R R R R R R R R R R R R R R M M M M M M M M M M M M M M M M T T T T T T T T T T T T T T T T Interstitial areas of unmet demand disappear if markets are moved closer together

  11. R R R R R R R R R R R R R R R R M M M M M M M M M M M M M M M M T T T T T T T T T T T T T T T T How will market area boundaries form given the ellipses formed by overlapping market areas? • Overlapping Trade Areas • Unfilled demand now served • Competition

  12. R M T A system of hexagonal market areas fills the plain so that every consumer is served and no market areas overlap Homogeneous plain • No Overlapping Trade Areas • Unfilled demand now served • No competition • Every producer making “normal profit”

  13. Further economic / spatial complications: • T and R are good- or service-specific • Separate demand curves / cones for each good or service • Why? • Different levels of demand • Different sensitivity to distance etc.

  14. Q Demanded Good / service A Good / service B Good / service C Distance Distance

  15. Q Demanded Good / service A Good / service B Good / service C Distance Distance Range A Range B Range C

  16. Q Demanded Good / service A Good / service B Good / service C Distance Distance Range A Range B Range C

  17. Orders of Goods / Services • lower order goods • small T & R • (high frequency, low cost) • higher order goods • large T & R • (low frequency, high cost goods) • i.e. different “geographies” for different goods / services

  18. Central Place Hierarchy: Cities,Towns, Villages and Hamlets: • Why cluster in Central Places? • Agglomeration economies • Urbanization economies • Localization economies • Clustering in Central Places • Vertical arrangement of central Places • (relative importance) • Horizontal Arrangement of Central Places • (situation of central places) • Organization of central place hierarchy • Ordering principles: k=3, 4 and 7 • Relationship between centres and market areas

  19. The Pain Will End Today:Conclusion of Central Place Theory • Wednesday, November 3 • Chapters 5-8 of Wheeler et al. • All lectures since October 8 • Format: same as Test 1 • M/C – 40% • FiB – 20% • S/A – 40%

  20. Central Place Theory: Recap • Tertiary activities: the city as a commercial centre… • …within a hierarchical system • Umlands • Simplifying assumptions • Spatial organization

  21. Christaller’s k=3 (Marketing) Principle • minimizes the market area size for any order of centre, OR • minimizes total consumer travel to purchase central place goods • Most efficient way of supplying consumers • Fixed relationship between each lower order market area and the next higher

  22. A B B B B A B A B B A B B B B B B A Christaller’s k=3 (Marketing) Principle • Q. Where should lower order B centre locate? • A. Midpoint between 3 A centres

  23. A B B B B A B A B B A B B B B B B A Christaller’s k=3 (Marketing) Principle • Q. Where should lower order B centre locate? • A. Midpoint between 3 A centres

  24. Christaller’s K=3 (Marketing) Principle

  25. Christaller’s k=3 (Marketing) Principleand distance • Centres of given order are equally spaced • Centres of next higher order are 3½ (=1.73) times distance between next lower order centres. • e.g. • If lower order B centres were 1km apart, grade A (next higher order) centres would be: • dAA=1*√3 = 1.73 km apart • If grade B centres were 3 km apart, grade A centres would be: • dAA= 3*√3 = 3*1.73 = 5.19 km apart

  26. Recap: “Rule of threes” in Christaller’s k=3 hierarchy of central places • There are the equivalent of 3 lower order market areas in each higher order market area OR • Each higher order market area is 3 times larger than the next lower order market area • The number of successively lower order centres increases as the sequence 3n for n=0,1,2… • The distance between two higher order centres is 3½ (=1.72) times distance between next lower order centres.

  27. A B B B B A B A B B A B B B B B B A Christaller’s k=3 (Marketing) Principle • Problem: lower order centres, B, are not on the straight line route between higher order centres, A

  28. Introducing:Christaller’s k=4 (Traffic) Principle • alternate arrangement that maximizes travel efficiency / connectivity between highest order places. • if transportation lines (roads etc) linked highest order places, grade B goods/centres would locate half-way between 2 A order places on road network -- results in k=4 system • k=4 is does not minimize total consumer travel but does minimize route-miles on main arterials • Text calls it transportation principle

  29. B B B B B B B Transportation linkage (connectivity) e.g. road Christaller’s k=4 (Traffic) Principle A • Q. Where should lower order B centre locate? • A. Midpoint between 2 A centres connected by road A A A A

  30. B B B B B B B Transportation linkage (connectivity) e.g. road Christaller’s k=4 (Traffic) Principle A A A A A

  31. B B B B B B B Transportation linkage (connectivity) e.g. road Christaller’s k=4 (Traffic) Principle A • Q. Where should lower order C centre locate? • A. Midpoint between 2 B centres connected by road A A A A

  32. A A A A A B B B B B B B Transportation linkage (connectivity) e.g. road Christaller’s k=4 (Traffic) Principle

  33. A A A A A B B B B B B B Transportation linkage (connectivity) e.g. road Christaller’s k=4 (Traffic) Principle

  34. 1/2 of area 4 6 1 5 3 2 B B B B B B B Transportation linkage (connectivity) e.g. road Christaller’s k=4 (Traffic) Principle A A Each higher order centre has the equivalent of 4 trade areas of the next lower order A A 1/2 1 + K = (6) =4 A

  35. Christaller’s k=4 (Traffic) Principle Series: 40,41,42,43,44…

  36. Christaller’s k=4 (Traffic) Principle and Distance between Centres • Centres of given order are equally spaced • Centres of next higher order are 4½ (=2) times distance between next lower order centres. • e.g. • If lower order B centres are 1km apart, grade A (next higher order) centres are: • dAA=1*√4 = 2 km apart • If grade B centres 3 km apart, grade A centres are: • dAA= 3*√4 = 3*2 = 6 km apart

  37. The “rule of fours” in Christaller’s k=4 hierarchy of central places • There are the equivalent of 4 lower order market areas in each higher order market area OR • Each higher order market area is 4 times larger than the next lower order market area • The number of successively lower order centres increases as the sequence 4n for n=0,1,2… • The distance between two higher order centres is 4½ (=2) times distance between next lower order centres.

  38. A B B B B A B A B B A B B B B B B A Christaller’s k=3 Principle - Reprise • Problem: lower order centres, B, and their market areas are divided among higher order market centres, A

  39. Introducing: Christaller’s K=7 (Administrative) Principle • Each lower level in hierarchy should be contained within trade area boundary of higher level • Administrative boundaries might prohibit discourage trade across borders etc. • Perverse effects of political borders • Bar closing hours • Community standards vs. cross border drinking • Sunday shopping issues • Community standards vs. cross border shopping • Fireworks, Post Falls ID and sales tax

  40. A A A A A Normal Trade Trade Barrier Christaller’s k=7 (Administration) Principle

  41. Christaller’s k=7 (Administration) Principle A A A A A Trade areas restricted to same region

  42. Christaller’s k=7 (Administrative Principle) Each green hexagon contains the equivalent of 7 blue hexagons Source: Sandra Lach Arlinghaus:http://www-personal.umich.edu/~sarhaus/image/solstice/sum04/sampler/

  43. Christaller’s k=7 (Administration) Principle

  44. The “rule of sevens” in Christaller’s k=7 hierarchy of central places • There are the equivalent of 7 lower order market areas in each higher order market area OR • Each higher order market area is 7 times larger than the next lower order market area • The number of successively lower order centres increases as the sequence 7n for n=0,1,2… • The distance between two higher order centres is 7½ (=2.65) times distance between next lower order centres.

  45. Common Elements of k=3, k=4, k=7 • k value specifies regular hierarchical ordering of places/markets • Model of order: regular, discrete, rigid, hierarchy • Equilibrium or “steady state” in a space economy. Central Place Theory • A normative spatial model... • “...more honoured in the breach than in the observance” (Hamlet)

  46. A professor’s necktie

  47. Central Place Theory • A way of thinking about hierarchies • Urban centres • Urban functions • Market areas • A starting point for theorizing about space and spatial dynamics • The basis for retail and trade area studies for planning urban commercial functions and macro-marketing

More Related