190 likes | 430 Views
Gesture Recognition / Sign Language. Lukas Bloder Johannes Bannhofer SE09 MUS2 SS10. Overview. Hardware Sign Language Live Demo System Architecture System Tools Technologies Problems Fazit. Hardware. P5 Glove API: http://www.robotgroup.org/index.cgi/P5Glove. CyberGlove :
E N D
Gesture Recognition / Sign Language Lukas Bloder Johannes Bannhofer SE09 MUS2 SS10
Overview • Hardware • SignLanguage • Live Demo • System Architecture • System Tools • Technologies • Problems • Fazit
Hardware P5 Glove API: http://www.robotgroup.org/index.cgi/P5Glove CyberGlove: http://www.immersion.com http://www.golem.de/0512/42086.html MIT Color Glove Handtracking http://people.csail.mit.edu/rywang/handtracking/
Hardware CyberGlove :
Hardware • Number of sensors: 18 or 22 • Sensor Resolution: 0.5 degrees (typical) • Sensor Data Rate: 90 records/sec minimum (100 records/sec typical). • Operating system andhosts: Windows 2000 and XP • Operating Range: 30 ft radius from USB port • Interface: USB port for the wireless receiver CyberGlove II:
Sign Language • American manual alphabet
Sign Language • Substitution signs • Dynamic signs: J, Z • Additional Signs • Space, enter, delete, variouscommands
System • C++ API (Partiallyfrom original sourceof 1998) • JNI Bridge • Application: • Exchangeable Processing (Matlab, weka) • Rules (substitutionsigns, comamnds) • Clients (Commandline, TTS, Graphical)
Classification using ANN • Matlabnntool
Classification using ANN • Matlab – Erros recognizing letters
Processing Rules • Rules to process more complex signs • Recognition splitted to Wrist/Fingers • Evaluation with rules
System Tools • Data Collector • Data Aggregator
Technologies Used • C++ / Java • Matlab • MaryTTS
Problems • Old API • Matlab /generating JAR Files • API license problems • Training data • Inconsistent sensor data
Fazit • Old Hardware still does the job • Don’t touch machine generated code • Generating good training data -> hard work
Thanks for your attention! Lukas Bloder Johannes Bannhofer SE09 PEG SS10