400 likes | 747 Views
HL-2A. SWIP SOLPS5.0 (B2.5+EIRENE) 活动介绍. 潘宇东,张锦华,崔学武,李佳鲜,郑国尧 2011.11.26. HL-2A. 内容介绍. SOLPS 5.0 ( B2.5+EIRENE version99 )移植 HL-2A 偏滤器放电实验观察 HL-2A 模拟结果与实验数据间的比对 HL-2A 模拟模型间相互比对 B2.5 单独运行与 B2.5+EIRENE 耦合运行的比对 B2.5 单独运行与 EMC3 运行结果的比对 HL-2M 标准偏滤器设计 HL-2M 雪花偏滤器设计初步结果.
E N D
HL-2A SWIP SOLPS5.0 (B2.5+EIRENE) 活动介绍 潘宇东,张锦华,崔学武,李佳鲜,郑国尧 2011.11.26
HL-2A 内容介绍 • SOLPS 5.0(B2.5+EIRENE version99)移植 • HL-2A 偏滤器放电实验观察 • HL-2A 模拟结果与实验数据间的比对 • HL-2A 模拟模型间相互比对 • B2.5 单独运行与B2.5+EIRENE耦合运行的比对 • B2.5 单独运行与EMC3运行结果的比对 • HL-2M 标准偏滤器设计 • HL-2M 雪花偏滤器设计初步结果
HL-2A上偏滤器放电观察 Bt = 1.42 T
HL-2A上偏滤器观察主要诊断手段 • 内外靶板上的Langmuir探针 • 外中平面气动探针 • IR 相机 • VUV 谱仪 • Ha/bolometer阵列 Viewing area of VUV spectrometer in HL-2A
SH: 01766 140 -81 Ip, kA Z, cm -87 -80 Z, cm -86 5 D⊥, cm D∥, cm -5 20% Imp2/Imp1-3 图4 对于4259次放电,偏滤器外靶板上的电子温度Ted随时间的变化。 Imp2/IP IV/IP 0 0 T, ms 350 HL-2A偏滤器位形成型
典型的偏滤器放电特点 • The plasma density drops. It perhaps is due to the wall recycling ratio reduces. • Hα emissions in the main plasma region drop • The plasma radiation, impurity in the main plasma region drop • The impurity and Hα radiations in the divertor rise • The neutral gas pressure in the divertor chamber rise
Te profile at inner/outer target plate. during ECRH(shot 4382). shot 4382 divertor discharges evolution.From up to down are :Ip,edge Tea and nea at midplane ,Ted3 and ned3 at outer target plate, Ted11 and ned11 at inner target plate, H_div and C Ⅲ_div at divertor chamber,H_x point,H_edge and C Ⅲ_edge,Bolometer Prad,neutral gas pressure at divertor target plate Pdiv and at midplane chamber Pedge. 芯部、靶板上参数分布
部分脱栏等离子体放电 plasma density up to 21019m-3 obtained. Phenomena observed similar to partially detached divertor regime in open divertor tokamak PDD behaviors Inner leg detached completely cooled up to X-point Reduced target plate heat flux near strike point Enhanced radiation
HL-2A HL-2A 边缘等离子体基本位形 CIB HL-2A放电位形 ASDEX放电位形 CIB:core interface boundary Psol, ne/Te at CIB, separatrix, target
HL-2A HL-2A divertor simulation when Psol=500kW. SN DN Modify-SN nesepm: maximal ne at midplane separatrix, nemxip: maximal ne at inner target plate, nemxap: maximal ne at outer target plate, tesepm: maximal Te at midplane separatrix, temxip: maximal Te at inner divertor plate, temxap: maximal Te at outer divertor target plate.
典型的HL-2A靶板热负载模拟结果 • Psol=500kW,粒子再循环系数设置为0.99。 • 中平面分离面电子密度 • 反常横越磁场的输运由粒子扩散系数和热扩散系数 Ref:1) Tokamak edge modeling and comparion with experimental in ASDEX. Plasma Physics and Controlled Fusion, Vol. 31, No. 10. pp. 1551-1568, 2)Y.D.Pan, Journal of nuclear materials 363-365(2007)407-411
HL-2A HL-2A plasma parameter distributions at midplane(red) and target plates in SN. (inner plate:green,outer:blue) X: distance along the midplane(m),Y: ne(m-3) and Te(eV) when ne at CIB are :5*1018m-3(upper), 2.5*1019m-3(middle), 3.0*1019m-3. ne(m-3) Te(eV)
HL-2A Power Distribution DN SN Power distributions.Psol=500kW,Bt=2.5T,No drift, pure H Plasma,recycling factor=0.99. SN DN:
HL-2A The heat flux and particle flux at target plate Vs. ne at CIB (W) (s-1) ne at CIB ne at CIB The heat flux(Ws-1) and particle flux (s-1) at outer target in SN Vs. ne at CIB.
HL-2A Plasma Parameters at SOL/Divertor region(SN) 1)electron temperature (eV) From up to down, 1)electron temperature (eV), 2)electron density(1020m-3), 3)ion/recombination productivity flux (1022 m-3 s-1), 4)pressure(Pa). Psol=500kW,H,No drift,D=1m2/s, xi=xe=2m2/s, Bt=2.5T. The density at CIB: left:1019m-3 right:2.5*1019m-3. 2)electron density(1020m-3), 3)ion/recombination productivity flux (1022 m-3 s-1) 4)pressure(Pa).
HL-2A Particle flux balance analysis at outer divertor region SN, particle flux balance at outer divertor region.Psol=500kW, ne at CIB: Even at very lower ne at CIB, the particle arrived target is larger. (1)strong ionization from H atom,(2)strong radial flow. The negative values of the energy flux indicate the flux directing towards outer divertor plates.
HL-2A Power flux balance analysis at outer divertor region SN, Power flux balance at outer divertor region.Psol=500kW, ne at CIB:
HL-2A 欧姆放电实验与模拟比较 HL-2A 实验观察,No 14775, 欧姆放电,Pohmic= 330kW ,气动探针提供外中平面测量参数(严龙文提供) 右:B2.5模拟结果:输入边界条件:偏滤器计算区域功率200kw, (不包括第一壁沉积功率),CBI磁面ne= 0.75E19m-3, D=0.5,xi=xe=1.5, Bt=2.5T 输出结果: 外中平面LCFS上Te/Ti= 9/14ev,CBI面上Te/Ti=11/27ev
B2模拟HL-2A边缘杂质分布 In the fluid model, the impurity transport along the magnetic field is governed by the classical force balance The dataset of HL-2A for simulation are taken from Ohmic L-mode discharge with Bt = 1.42 T, where the operation ranges at =0.75 ~ 4.5 x 1019 m-3, Ip = 150~250 kA and loop voltage = 1.2 ~ 1.5V. Ref: Edge Impurity Transport Study in Stochastic Layer of LHD and Scrape-off Layer of HL-2A , M. Kobayashi
B2模拟HL-2A边缘杂质分布 The value of is varied in a range of 0.1 ~ 0.7 x 1019 m-3 with the fixed Ohmic input power. The perpendicular particle and energy transport coefficients of are set to 0.50 and 1.50 m2/s, respectively. (a) Two dimensional distribution of carbon density summed over all charge states, (b) force balance of =0.25 x1019 m-3 (upper) and 0.60 x1019 m-3 (lower). Ref: Edge Impurity Transport Study in Stochastic Layer of LHD and Scrape-off Layer of HL-2A , M. Kobayashi
Collaboration with NIFS IAEA-2010-NF Paper Edge Impurity Transport Study in Stochastic Layer of LHD and Scrape-off Layer of HL-2A M. Kobayashi 1), S. Morita 1), C.F. Dong 1), Y. Feng 2), S. Masuzaki 1), M. Goto 1), T. Morisaki 1), H.Y.Zhou 1), H. Yamada 1) and the LHD Experiment group 1) 1) National Institute for Fusion Science, Toki 509-5292, Japan 2) Max-Planck-Institute fuer Plasmaphysik, D-17491 Greifswald, Germany Z. Y. Cui 3), Y. D. Pan 3), Y. D. Gao 3), J. Cheng 3), P. Sun 3), Q. W. Yang 3) and X. R. Duan 3) 3) Southwestern Institute of Physics, P. O. Box 432, Chengdu 610041, China E-mail contact of main author: kobayashi.masahiro@lhd.nifs.ac.jp
B2.5 与EMC3计算结果比较 Bt = 1.42 T, where the operation ranges at =0.75 ~ 4.5 x 1019 m-3, Ip = 150~250 kA and loop voltage = 1.2 ~ 1.5V. B2模拟中进入模拟计算区域的电子通道和离子通道的能量通量相等。
B2与实验数据的比较(HL-2A) • 目前,HL-2A的B2模拟数据很难要求中平面,靶板测量数据完全吻合,客观的原因很多,主观的原因。。。 • 上下游测量数据的完整性和自洽性 • HL-2A边界位形识别的准确性 • B2模拟边界上游参数的假设不确定性 • 例如,假设从芯部流入SOL层的电子和离子分别携带一半的能量,计算结果显示主真空室第一壁上的热负载份额相当高,可达50%。因此在原 ASDEX 模拟计算中采用了电子通道携带70%,离子通道30%的份额,且再循环系数主室取 0.8,偏滤器区域0.5。 • SOL层厚度 • 反常输运系数的选择
下单零位形betap=0.6, IP=2.0MA 下单零位形betap=0.6, IP=2.0MA HL-2M Configuration(2011) B 位形特点:高X点,下单零位形betap=0.6, IP=2.0MA CASE 1. 下单零位形 A 位形特点低X点,下单零位形betap=0.6, IP=2.0MA
HL-2M 偏滤器设计 基于HL-2M等离子体位形的B2.5模拟计算网格 I型偏滤器位形(Divertor-1) II型偏滤器位形设计(Divertor-3)
内/外靶板上沉积的功率密度峰值随LCFS电子密度的分布(B2单独计算)内/外靶板上沉积的功率密度峰值随LCFS电子密度的分布(B2单独计算) • Psol=10MW,粒子再循环系数设置为1.00。 • 反常横越磁场的输运由粒子扩散系数和热扩散系数 Divertor-1与Divertor-3内靶板上沉积的功率密度峰值随上游中平面密度的分布 Divertor-1与Divertor-3外靶板上沉积的功率密度峰值随上游中平面密度的分布
多种Psol下,靶板功率密度分布(B2单独计算) 中平面分离面电子密度为时, ,Psol分别为5MW,10MW,20MW下Divertor-1和Divertor-3内、外靶板上沉积的热通量密度沿偏滤器靶板的分布
内/外靶板上沉积的功率密度峰值随LCFS电子密度的分布(B2-eirene计算)内/外靶板上沉积的功率密度峰值随LCFS电子密度的分布(B2-eirene计算) • Psol=10MW,粒子再循环系数设置为1.00。 • 反常横越磁场的输运由粒子扩散系数和热扩散系数 Divertor-I与Divertor-II内靶板上沉积的功率密度峰值随上游中平面密度的分布 Divertor-I与Divertor-II 外靶板上沉积的功率密度峰值随上游中平面密度的分布
B2-EIRENE 耦合计算HL-2M 偏滤器 • Psol=10MW, • 反常横越磁场的输运由粒子扩散系数和热扩散系数 Nsep=1.732×1019m-3时,两种偏滤器外靶板上 的电子和离子热通量分布 Nsep=1.732×1019m-3时,两种偏滤器结构第一壁上的电子、离子和总的热通量分布
固定Psol,B2单独运行和B2-EIRENE运行时的结果比较固定Psol,B2单独运行和B2-EIRENE运行时的结果比较 • B2单独运行时,第一壁热负载约占进入SOL总功率的50%,过高的比例可能与SOL层厚度(目前是3cm),输运状态,中性粒子模型等有关。 • B2-EIRENE耦合运行下,第一壁热负载约占20%。 • 抛开第一壁上热沉积份额,如果进入偏滤器计算区域的热通量相当,两种计算结果一致。
雪花偏滤器位形设计 • 双零雪花位形 • 单零雪花位形 • 利用现有的PF线圈 • 不增加真空室的大小
10MW能量流进SOL层, SF偏滤器靶板上的总热通量分布(B2-EIRENE)
Psol=10MW,不同上游nsep密度下,SF靶板的峰值热通量(B2-EIRENE)Psol=10MW,不同上游nsep密度下,SF靶板的峰值热通量(B2-EIRENE)
小结 • SWIP用B2-eirene 对HL-2A,HL-2M装置做了大量的预测性模拟计算 • 从B2与HL-2A实验数据的比对中,我们积累了一些经验,帮助我们理解代码。 • SWIP与NIFS就B2与EMC3进行了比对 • B2-eirene是HL-2M偏滤器设计的重要工具。目前我们进行了兼容HL-2M的标准偏滤器和雪花偏滤器靶板初步设计。