1 / 39

traveling salesman problem

traveling salesman problem. ZIP-Method deductive approach of an optimal solution of symmetrical Traveling-salesman-problems. http://www.jochen-pleines.de. new ideas. das Rundreiseproblem bisherige Lösungen New ideas Beispiel mit 6 Knoten Beispiel mit 10 Knoten

orea
Download Presentation

traveling salesman problem

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. travelingsalesman problem ZIP-Method deductive approach of an optimal solution of symmetrical Traveling-salesman-problems http://www.jochen-pleines.de

  2. new ideas ... • das Rundreiseproblem • bisherige Lösungen • New ideas • Beispiel mit 6 Knoten • Beispiel mit 10 Knoten • Beispiel mit 26 Knoten (Ergebnisse) • Schlussfolgerungen und Ausblick

  3. new ideas ... • but first a task for you: • Please note in arbitrary order the numbers from 1 to 6. 5 3 6 2 1 4

  4. new ideas ... • If you connect the nodes, then it develops: • 1-component G • with 6 edges • with 6 nodes • each node has the grade 2 5 5 3 6 2 1 4

  5. new ideas ... we remember: if n = 6 then: n! = 720 (n-1)! = 120 (n-1)! / 2 = 60 5 5 3 6 2 1 4

  6. new ideas ... now we add the values of the nodes: as well each node accurs twice: 5 5 3 6 2 • at the beginning of an edge (1-6) • and at the endof an edge (4-1). 1 1 4 and that is evil !

  7. new ideas ... If each node accursonly once, thenoriginate from a graph: a partial-graph with all of the 6 nodes, but only with 3 edges: for example:edges: 1-6, 5-3, 2-4 5 5 3 6 2 1 4

  8. new ideas ... ... a complement partial- graph with the same structure remains like the edges: 1-4, 2-3, 5-6 5 5 3 6 2 1 4

  9. new ideas ... • So the graph gets together: • from the partial-graph with edges:1-6,5-3,2-4 • and the partial-graph with edges :1-4,2-3,5-6 5 5 3 6 2 1 4

  10. we remember: With n = 6 nodes there exist 120 graphs respectively 60 symmetric graphs How many partial-graphs actual exist ? 1. partial-graph 1 - 2 3 - 4 5 - 6 2. partial-graph 1 - 2 3 - 5 4 - 6 3. partial-graph 1 - 2 3 - 6 4 - 5 new ideas ... 4. partial-graph 1 - 3 2 - 4 5 - 6 5. partial-graph 1 - 3 2 - 5 4 - 6 6. partial-graph 1 - 3 2 - 6 4 - 5 7. partial-graph 1 - 4 2 - 3 5 - 6 8. partial-graph 1 - 4 2 - 5 3 - 6 9. partial-graph 1 - 4 2 - 6 3 - 5 10. partial-graph 1 - 5 2 - 3 4 - 6 11. partial-graph 1 - 5 2 - 4 3 - 6 12. partial-graph 1 - 5 2 - 6 3 - 4 13. partial-graph 1 - 6 2 - 3 4 - 5 14. partial-graph 1 - 6 2 - 4 3 - 5 15. partial-graph 1 - 6 2 - 5 3 - 4 not more !

  11. By using the the Symmetry-rule and the Sort-rule each of the 120 Graphscan be devorced into 2 of the 15partial-graphs. 1. partial-graph 1 - 2 3 - 4 5 - 6 2. partial-graph 1 - 2 3 - 5 4 - 6 3. partial-graph 1 - 2 3 - 6 4 - 5 4. partial-graph 1 - 3 2 - 4 5 - 6 5. partial-graph 1 - 3 2 - 5 4 - 6 6. partial-graph 1 - 3 2 - 6 4 - 5 7. partial-graph 1 - 4 2 - 3 5 - 6 8. partial-graph 1 - 4 2 - 5 3 - 6 9. partial-graph 1 - 4 2 - 6 3 - 5 10. partial-graph 1 - 5 2 - 3 4 - 6 11. partial-graph 1 - 5 2 - 4 3 - 6 12. partial-graph 1 - 5 2 - 6 3 - 4 13. partial-graph 1 - 6 2 - 3 4 - 5 14. partial-graph 1 - 6 2 - 4 3 - 5 15. partial-graph 1 - 6 2 - 5 3 - 4 new ideas ... Please try it with your own example !

  12. new ideas ... • Symmetry-Rule: • The begin-node of an edge has the lower number then the end-node: i < j: ->f(1-6) + f(5-3) + f(2-4) = f(1-6) + f(3-5) + f(2-4) 5 5 3 6 2 1 4

  13. new ideas ... • Sort-Rule: • die edges will be sorted by the begin-node of the edges. • 1. edge2. edge3. edge->f(1-6)+ f(3-5) + f(2-4) = f(1-6)+ f(2-4) + f(3-5) 5 5 3 6 2 1 4

  14. How many partial graphs „matching“ to a partial graph, i.o. do all of the graphs form one together again ? Example: 1-2, 3-4, 5-6 1. partial-graph 1 - 2 3 - 4 5 - 6 2. partial-graph 1 - 2 3 - 5 4 - 6 3. partial-graph 1 - 2 3 - 6 4 - 5 4. partial-graph 1 - 3 2 - 4 5 - 6 5. partial-graph 1 - 3 2 - 5 4 - 6 6. partial-graph 1 - 3 2 - 6 4 - 5 7. partial-graph 1 - 4 2 - 3 5 - 6 8. partial-graph 1 - 4 2 - 5 3 - 6 9. partial-graph 1 - 4 2 - 6 3 - 5 10. partial-graph 1 - 5 2 - 3 4 - 6 11. partial-graph 1 - 5 2 - 4 3 - 6 12. partial-graph 1 - 5 2 - 6 3 - 4 13. partial-graph 1 - 6 2 - 3 4 - 5 14. partial-graph 1 - 6 2 - 4 3 - 5 15. partial-graph 1 - 6 2 - 5 3 - 4 new ideas ... altogether 8 (= 2 x 4) No.5, 6, 8, 9, 10, 11, 13, 14

  15. new ideas ... Further considerations: The smallest (complete-)graph gets together: either: from the two found partial-graphs(smallest partial-graph with accompanying smallest comp-partial-graph) or: from two partial-graphs lying between this.

  16. How to find out the lowest graph ? 1. step:on find out the lowest partial - graph 2. step:on find out the belonginglowest Comp-partial-graph. new ideas ... 1. partial-graph 1 - 2 3 - 4 5 - 6 2. partial-graph 1 - 2 3 - 5 4 - 6 3. partial-graph 1 - 2 3 - 6 4 - 5 4. partial-graph 1 - 3 2 - 4 5 - 6 5. partial-graph 1 - 3 2 - 5 4 - 6 6. partial-graph 1 - 3 2 - 6 4 - 5 7. partial-graph 1 - 4 2 - 3 5 - 6 8. partial-graph 1 - 4 2 - 5 3 - 6 9. partial-graph 1 - 4 2 - 6 3 - 5 10. partial-graph 1 - 5 2 - 3 4 - 6 11. partial-graph 1 - 5 2 - 4 3 - 6 12. partial-graph 1 - 5 2 - 6 3 - 4 13. partial-graph 1 - 6 2 - 3 4 - 5 14. partial-graph 1 - 6 2 - 4 3 - 5 15. partial-graph 1 - 6 2 - 5 3 - 4

  17. new ideas ... There perhaps the lowest graph is found !But only: perhaps!

  18. new ideas ... example: • lowest partial-graph has a length of edge: 20 • der lowest belonging Compl.-partial-graph: 40 • result a graph: 60 • that means, • (a+b) < c -> a and/or b < (c/2) • and a < b or a = b -> a < (c/2)

  19. new ideas ... Further iteration steps:(up to half the edge length of the so far smallest found complet graph) • starting out from the smallest partial-graph it this one is respectively greater partial-graph with his complement partial-graph checked most nearly, wether from this a smaler complete-graph can be put together. • if yes: the new complete-graph is initial value for further iteration steps. • if no: the smallest graph is already found

  20. example with 6 nodes • das Rundreiseproblem • bisherige Lösungen • neue Überlegungen • example with 6 nodes • Beispiel mit 10 Knoten • Beispiel mit 26 Knoten (Ergebnisse) • Schlussfolgerungen und Ausblick

  21. example with 6 nodes Given 6 nodes with the values of the edges: • to 1 to 2 to 3 to 4 to 5 to 6 from 1 - 12 25 30 28 22 from 2 - 16 20 22 10 from 3 - 23 26 21 from 4 - 31 18 from 5 - 14 from 6 -

  22. to divide 60 partial-graphs 60 partial-graphs to sort 15 partial-graphs 15 partial-graphs to compute example with 6 nodes 60 symmetric graphs minimal graph

  23. compl.-partial-graph Nr. 1.K.2.K.3.K.K.-Länge 1. 1 - 2 3 - 4 5 - 6 49 2. 1 - 2 3 - 5 4 - 6 56 3. 1 - 2 3 - 6 4 - 5 64 4. 1 - 3 2 - 4 5 - 6 59 5. 1 - 3 2 - 5 4 - 6 65 6. 1 - 3 2 - 6 4 - 5 66 7. 1 - 4 2 - 3 5 - 6 60 8. 1 - 4 2 - 5 3 - 6 73 9. 1 - 4 2 - 6 3 - 5 66 10. 1 - 5 2 - 3 4 - 6 62 11. 1 - 5 2 - 4 3 - 6 69 12. 1 - 5 2 - 6 3 - 4 61 13. 1 - 6 2 - 3 4 - 5 69 14. 1 - 6 2 - 4 3 - 5 68 15. 1 - 6 2 - 5 3 - 4 67 example with 6 nodes Partial-graph Nr. 1.K.2.K.3.K.K.-Länge 1. 1 - 2 3 - 4 5 - 6 49 2. 1 - 2 3 - 5 4 - 6 56 3. 1 - 2 3 - 6 4 - 5 64 4. 1 - 3 2 - 4 5 - 6 59 5. 1 - 3 2 - 5 4 - 6 65 6. 1 - 3 2 - 6 4 - 5 66 7. 1 - 4 2 - 3 5 - 6 60 8. 1 - 4 2 - 5 3 - 6 73 9. 1 - 4 2 - 6 3 - 5 66 10. 1 - 5 2 - 3 4 - 6 62 11. 1 - 5 2 - 4 3 - 6 69 12. 1 - 5 2 - 6 3 - 4 61 13. 1 - 6 2 - 3 4 - 5 69 14. 1 - 6 2 - 4 3 - 5 68 15. 1 - 6 2 - 5 3 - 4 67 (49 + 62) : 2 = 55,5 Length of the graph: 111

  24. example with 10 nodes • das Rundreiseproblem - Fragestellung • Problem und bisherige Lösungen • neue Überlegungen • Beispiel mit 6 Knoten • Example with 10 nodes • Beispiel mit 26 Knoten (Ergebnisse) • Schlussfolgerungen und Ausblick

  25. example with 10 nodes development of the ZIP-term with n = 10: 1 · 3 · 5 · 7 · 9 = 1 ·2· 3 · 4· 5 · 6 · 7 · 8 · 9 ————————————— = 2 · 4 · 6 · 8 9! ————————————— = (1 · 2) · (2 · 2) · (3 · 2) · (4 · 2) 9! ————————————— = ( 1 · 2 · 3 · 4 ) · ( 2·2·2·2) 9! ————————————— = 4! · 24 (10 – 1)! ————————————— = (5 – 1)! · 2(5-1)

  26. example with 10 nodes (n – 1)! ————————— ( n/2 – 1 ) ! · 2 n/2 - 1 by that: { ( n/2 – 1 ) ! }(Sort-rule) Partial-graph: —— — — — (number of edges =n/2)1 x2 x 2 x 2 x 2 (Symmetry) Begin-edge = x1

  27. example with 10 nodes

  28. min.p-g min.p-gkomp Sorting of the 945 partial-graphs after edge-length example with 10 nodes cur.No. length 1. edge 2.edge 3.edge 4.edge 5.edge Notice 1 76 1 - 2 3 - 7 4 - 6 5 - 8 9 -10 2 77 1 - 5 2 - 9 3 - 8 4 - 6 7 -10 3 79 1 - 5 2 -10 3 - 7 4 - 6 8 - 9 4 83 1 - 5 2 - 7 3 - 8 4 - 6 9 -10 92 1 - 2 3 - 5 4 - 6 7 -10 8 - 9 5 6 93 1 - 2 3 - 9 4 - 6 5 - 8 7 -10 7 96 1 - 2 3 - 6 4 - 9 5 - 8 7 -10 8 96 1 - 8 2 - 5 3 - 7 4 - 6 9 -10 9 97 1 - 5 2 - 3 4 - 6 7 -10 8 - 9 10 100 1 - 2 3 - 6 4 - 5 7 -10 8 - 9 11 100 1 - 5 2 - 7 3 - 6 4 -10 8 - 9 12 101 1 - 8 2 - 9 3 - 5 4 - 6 7 -10 13 103 1 - 3 2 - 9 4 - 6 5 - 8 7 -10 .... min. p-g + min.p-gkomp = 176; 176 / 2 = 88 until 945

  29. example with 10 nodes cur.No. length 1. edge 2.edge 3.edge 4.edge 5.edge Notice 1 76 1 - 2 3 - 7 4 - 6 5 - 8 9 -10 2 77 1 - 5 2 - 9 3 - 8 4 - 6 7 -10 3 79 1 - 5 2 -10 3 - 7 4 - 6 8 - 9 4 83 1 - 5 2 - 7 3 - 8 4 - 6 9 -10 92 1 - 2 3 - 5 4 - 6 7 -10 8 - 9 5 6 93 1 - 2 3 - 9 4 - 6 5 - 8 7 -10 7 96 1 - 2 3 - 6 4 - 9 5 - 8 7 -10 8 96 1 - 8 2 - 5 3 - 7 4 - 6 9 -10 9 97 1 - 5 2 - 3 4 - 6 7 -10 8 - 9 10 100 1 - 2 3 - 6 4 - 5 7 -10 8 - 9 11 100 1 - 5 2 - 7 3 - 6 4 -10 8 - 9 12 101 1 - 8 2 - 9 3 - 5 4 - 6 7 -10 13 103 1 - 3 2 - 9 4 - 6 5 - 8 7 -10 .... until 945

  30. example with 10 nodes cur.No. length 1. edge 2.edge 3.edge 4.edge 5.edge Notice 1 76 1 - 2 3 - 7 4 - 6 5 - 8 9 -10 2 77 1 - 5 2 - 9 3 - 8 4 - 6 7 -10 3 79 1 - 5 2 -10 3 - 7 4 - 6 8 - 9 4 83 1 - 5 2 - 7 3 - 8 4 - 6 9 -10 92 1 - 2 3 - 5 4 - 6 7 -10 8 - 9 5 6 93 1 - 2 3 - 9 4 - 6 5 - 8 7 -10 7 96 1 - 2 3 - 6 4 - 9 5 - 8 7 -10 8 96 1 - 8 2 - 5 3 - 7 4 - 6 9 -10 9 97 1 - 5 2 - 3 4 - 6 7 -10 8 - 9 10 100 1 - 2 3 - 6 4 - 5 7 -10 8 - 9 11 100 1 - 5 2 - 7 3 - 6 4 -10 8 - 9 12 101 1 - 8 2 - 9 3 - 5 4 - 6 7 -10 13 103 1 - 3 2 - 9 4 - 6 5 - 8 7 -10 .... until 945

  31. min.p-gkomp example with 10 nodes cur.No. length 1. edge 2.edge 3.edge 4.edge 5.edge Notice 1 76 1 - 2 3 - 7 4 - 6 5 - 8 9 -10 2 77 1 - 5 2 - 9 3 - 8 4 - 6 7 -10 min. p-g 3 79 1 - 5 2 -10 3 - 7 4 - 6 8 - 9 4 83 1 - 5 2 - 7 3 - 8 4 - 6 9 -10 92 1 - 2 3 - 5 4 - 6 7 -10 8 - 9 5 6 93 1 - 2 3 - 9 4 - 6 5 - 8 7 -10 7 96 1 - 2 3 - 6 4 - 9 5 - 8 7 -10 8 96 1 - 8 2 - 5 3 - 7 4 - 6 9 -10 9 97 1 - 5 2 - 3 4 - 6 7 -10 8 - 9 10 100 1 - 2 3 - 6 4 - 5 7 -10 8 - 9 11 100 1 - 5 2 - 7 3 - 6 4 -10 8 - 9 12 101 1 - 8 2 - 9 3 - 5 4 - 6 7 -10 13 103 1 - 3 2 - 9 4 - 6 5 - 8 7 -10 .... min. p-g + min.p-gkomp = 175; 175 / 2 = 87,5 until 945

  32. opt. p-g opt. p-gkomp example with 10 nodes cur.No. length 1. edge 2.edge 3.edge 4.edge 5.edge Notice 1 76 1 - 2 3 - 7 4 - 6 5 - 8 9 -10 2 77 1 - 5 2 - 9 3 - 8 4 - 6 7 -10 3 79 1 - 5 2 -10 3 - 7 4 - 6 8 - 9 4 83 1 - 5 2 - 7 3 - 8 4 - 6 9 -10 92 1 - 2 3 - 5 4 - 6 8 - 9 5 7 -10 6 93 1 - 2 3 - 9 4 - 6 5 - 8 7 -10 7 96 1 - 2 3 - 6 4 - 9 5 - 8 7 -10 8 96 1 - 8 2 - 5 3 - 7 4 - 6 9 -10 9 97 1 - 5 2 - 3 4 - 6 7 -10 8 - 9 10 100 1 - 2 3 - 6 4 - 5 7 -10 8 - 9 11 100 1 - 5 2 - 7 3 - 6 4 -10 8 - 9 12 101 1 - 8 2 - 9 3 - 5 4 - 6 7 -10 13 103 1 - 3 2 - 9 4 - 6 5 - 8 7 -10 .... until 945

  33. example with 10 nodes Quantity of partial-graphs after the 1. pass through: only 11 of 945 partial-graphs Sum of the values of edges of altogether 181.440 graphs

  34. example with 10 nodes • From altogether 945 partial-graphs will eliminate with back tracking of the limited Enumeration: • Stop after the 5th edge: 0 edge • Stop after the 4th edge: 1 edge • Stop after the 3th edge: 3 edges • Stop after the 2th edge: 15 edges • Stop after the first edge: 105 edges Þ earliest stop if possible!!

  35. example with 10 nodes Relation between begin-node and place of the edge: 1. Edge 2. Edge 3. Edge 4. Edge 5. Edge 1-2...1-10 2-3...2-10 3-4...3-10 4-5...4-10 5-6...5-10or or or or 3-4...3-10 4-5...4-10 5-6...5-10 6-7...6-10or or or 5-6...5-10 6-7...6-10 7-8...7-10 or or 7-8...7-10 8-9...8-10or 9-10.

  36. example with 10 nodes

  37. example with 6 nodes Some more ideas: • Numbering-rule (the greatest difference first) • Minimal-edge-rule (calculation of the smallest edge still outstanding for every single edge-place; no more for everyone – see page before: relation between begin-node and place of the edge)

  38. example with 6 nodes Example: node xi with his 5 edges Minimal-edge-rule Numbering-rule

  39. traveling salesman problem Thank you for your interest

More Related