230 likes | 333 Views
High Speed Samplers and Digital Filters for VLBI. Dick Ferris AT Electronics Development Group June 2003. Topics. Digital Filters can provide the identical, stable and linear-phase channel passbands required for an ideal interferometer.... Current Usage in VLBI
E N D
High Speed Samplers and Digital Filters for VLBI Dick Ferris AT Electronics Development Group June 2003
Topics • Digital Filters can provide the identical, stable and linear-phase channel passbands required for an ideal interferometer.... • Current Usage in VLBI • Polyphase Digital Filterbanks • The Geocentric DAS • The slow march of ADC technology High Speed Samplers and Digital Filters for VLBI
Eg. 1 K4 System (CRL ~1993) High Speed Samplers and Digital Filters for VLBI
Eg. 2 X_FILT (ATNF 1994) High Speed Samplers and Digital Filters for VLBI
Eg. 3 LBA DAS BandSplitter(ATNF 1997) B=16MHz,... 1MHz High Speed Samplers and Digital Filters for VLBI
0..192MHz IF F =128Msps s - F F B=64MHz o o F =32, 96, 160MHz o n(+1) - 1 HT LPF M/2 - n z - 1 D T F o I+jQ F Q I o Analytic ¯ M ¯ M - F F F o o o B=32, 16..., 1MHz Eg. 3 LBA DAS BandSplitter(ATNF 1997) High Speed Samplers and Digital Filters for VLBI
IF 0..16MHz IF 0..16MHz - - jsin jsin w. w. t t cos cos w. w. t t D T 0..16MHz 0..16MHz - j p/2 p/2 ~ ~ M/2 - z ¯ M ¯ M Q I F F F F o o o o ¯ M ¯ M + + + - F LSB USB F F o o o B=16MHz,... 62.5kHz B=16MHz,... 62.5kHz F o Eg. 3 LBA DAS FineTuner (ATNF 1997) LBA DAS Summary Input 'virtual' LO at 32, 96 & 160MHz, 64MHz bandwidth Fine tuner 1Hz resolution over 16MHz LO-centred single passbands (64MHz), 32,…62.5kHz LO-contiguous dual passbands 16MHz,…62.5kHz Flip all passbands, separate duals 40dB sideband separation, 40dB stopbands 8-bit ADC, 10-28 bits internal 2-bit requantiser servos, 12dB range + 12dB AGC High Speed Samplers and Digital Filters for VLBI
Eg. 4 VERA (NAO 2001) High Speed Samplers and Digital Filters for VLBI
1 0 1 X0(m) x(n) -jwkn j2p/M X1(m) x(n) e -j2pk(mM+r)/M WM= e = e wk=2pk/M B IF n=mM+r M M M M Xk(m) x(n) Fs=B 0 M-1 -j2pkr/M eg. B=1GHz M=1000 = e 2 1/M XM-1(m) x(n) =WM-kr -jwM-1n -jwkn -jw1n -jw0n e e e e The Filterbank Alternative High Speed Samplers and Digital Filters for VLBI
Xk(m) x'(n) x(n) h(n) WM-kr r=n MOD M y(n)= h(i) x'(n-i) x0(m) x0(m) y0(m) y0(m) x0(m) x0(m) 0 p0(m) p0(m) p1(m) p0(m) p0(m) p1(m) p1(m) p1(m) WM-0 WM-0 x1(m) x1(m) y1(m) y1(m) x1(m) x1(m) 1 DFT as FFT WM-k pr(m) pM-1(m) pM-1(m) pr(m) pr(m) pr(m) pM-1(m) pM-1(m) WM-k Xk(m)= yr(m)WM-kr WM-kr M x(n) x(n) x(n) x(n) xr(m) xr(m) yr(m) yr(m) xk(m) xr(m) r WM-kr WM-kr yM-1(m) xM-1(m) xM-1(m) yM-1(m) xM-1(m) xM-1(m) M-1 WM-k(M-1) WM-k(M-1) Transforming the Filter High Speed Samplers and Digital Filters for VLBI
1GHz 1GHz 4k channels 4k channels Subband Analysis • Standard • Zoom • n*Zoom • n*Zoom^n High Speed Samplers and Digital Filters for VLBI
Conventional Channelisation High Speed Samplers and Digital Filters for VLBI
Filterbank Channelisation High Speed Samplers and Digital Filters for VLBI
Schedule+DataBase+Clock PCFS Pointing Tuning (Digitisation) Channelisation 2-bit quantisation Data Transport >>>>>>>> Schedule+DataBase+Clock PCFS Pointing Tuning Digitisation Delay Tracking Channelisation 2-bit quantisation Data Transport >>>>>>>> Schedule+DataBase+Clock PCFS Pointing Tuning Digitisation Delay Tracking Channelisation Phase Tracking 2-bit quantisation Data Transport >>>>>>>> Schedule+DataBase+Clock PCFS Pointing Tuning Digitisation Delay Tracking Channelisation I Channelisation II Phase Tracking 2-bit quantisation Data Transport >>>>>>>> Schedule+DataBase+Clock CorrCon Data Transport Delay Tracking Phase Tracking Channelisation Correlation (Complex XMULT and Int) Schedule+DataBase+Clock CorrCon Data Transport Phase Tracking Channelisation Correlation (Complex XMULT and Int) Schedule+DataBase+Clock CorrCon Data Transport Channelisation Correlation (Complex XMULT and Int) Schedule+DataBase+Clock CorrControl Data Transport Correlation (Complex XMULT and Int) DAS<->Correlator Tasking Schedule+DataBase+Clock Control Process Pointing Tuning (Digitisation) Delay Tracking Channelisation Phase Tracking (Re) quantisation Correlation High Speed Samplers and Digital Filters for VLBI
Basic Configuration Simple Zoom Multiple Zoom (>2 possible) FIR FFT FIR FFT FringeRotators Correlators DMUX Filterbank Compound Zoom A Wideband Upgrade for the Australia Telescope Compact Array Luneburg Lens Phased Array Luneburg Lens Phased Array 6 * 22m antenna AT Compact Array FPGA hardware may be completely reprogrammed to produce many different filterbank configurations, as different observations may require. A 2GHz bandwidth polyphase digital filterbank with 4096 channels ... ... will fit into four XC2V6000 FPGAs Filterbank Architecture RF, IF and Baseband Signal Path
commercial experimental/military Analog-to-Digital Converters: COTS / non-COTS from Bob Walden HRL 1999
High Speed Samplers and Digital Filters for VLBI from Paul Roberts ATEDG 2002
Summary • Digital Filters can provide the identical, stable and linear-phase channel passbands required for an ideal interferometer.... • Current Usage in VLBI • Polyphase Digital Filterbanks • The Geocentric DAS • The slow march of ADC technology High Speed Samplers and Digital Filters for VLBI
Digital Filter Basics • Two-point running mean: y(n)=(x(n)+x(n-1))/2 >> LPF • First order differences: y(n)=(x(n)-x(n-1))/2 >> HPF • FIR filter as generalised N-point running mean (convolution) y(n)= h(i) x(n-i)0<=i<N • h(n) is impulse response h(n) H(f) • Even part: he(n)=(h(n)+h(N-1-n))/2; a(i)=2he((N-1)/2-i) • Odd part: ho(n)=(h(n)- h(N-1-n))/2; b(i)=2ho((N-1)/2-i) • H(f)=a(0)/2+(a(i) cos2if + j b(i) sin2if) Fs=1, N odd • he(n) He(f); zero/linear phase, zero/constant group delay • ho(n) Ho(f); quadrature phase Why High Speed Samplers and Digital Filters for VLBI
Why choose Digital? • Completely deterministic; no component selection or tweaking • ‘Easy’ design, exact modelling, precise performance • Amplitude & phase characteristics as stable as sampling clock • Wider, flatter passbands, perfectly matched between systems • Nil dispersion/group delay distortion across the passband • Reduced closure errors >> better calibration • One sampler, multiple passbands; avoids ‘platforming’ • One hardware platform; many modes, functions • Cost effective for high performance multichannel systems • Ex High Speed Samplers and Digital Filters for VLBI
Generic VC/BBC High Speed Samplers and Digital Filters for VLBI