1 / 27

Ch1-Phasors ( 페이저 ) 페이저 : 정현파 파동을 표현하기 위한 복소수

Ch1-Phasors ( 페이저 ) 페이저 : 정현파 파동을 표현하기 위한 복소수. Traveling Waves ( 진행파 ). Direction of propagation ( 전파진행 방향 ). Wavefront ( 파면 ; 동일시간에 방사되었음 ). f + (x-vt) ( 일반적인 파동의 표현식 ). f + (x). t=0. x 0 =vt 0. f + (x-x 0 ). x 1 =vt 1. t=t 0. f + (x-x 1 ). t=t 1. x t =vt. f + (x-x t ). t.

ortizeddie
Download Presentation

Ch1-Phasors ( 페이저 ) 페이저 : 정현파 파동을 표현하기 위한 복소수

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ch1-Phasors (페이저)페이저: 정현파 파동을 표현하기 위한 복소수

  2. Traveling Waves (진행파) Direction of propagation (전파진행 방향) Wavefront (파면; 동일시간에 방사되었음) f+(x-vt) (일반적인 파동의 표현식)

  3. f+(x) t=0 x0=vt0 f+(x-x0) x1=vt1 t=t0 f+(x-x1) t=t1 xt=vt f+(x-xt) t x1 xt x0 Wave (파동) propagation (전파) f+(x-vt)

  4. Sinusoidal Wave (정편파) ASin(x-vt) For propagation direction, only relative sign between x and t matters

  5. Sinusoidal Wave ASin(x+vt) For propagation direction, only relative sign between x and t matters

  6. Decaying Sinusoid Ae-axSin(x-vt) Propagation in a lossy medium

  7. Electromagnetic Spectrum Application determined by wavelength http://lectureonline.cl.msu.edu/~mmp/applist/Spectrum/s.htm

  8. Wavelength determines application

  9. Wave Parameters (파동 패러미터) y =Asin(ωt-βx) y: electric field (전기장 파동) x: position on x axis (위치) Amplitude (진폭) = A Period (주기) = T Frequency (주파수) f = 1/T Angular frequency (각속도) w = 2pf = 2p/T Velocity (속도) v = ω/β Propagation constant (전파상수) β = 2p/l l : Wavelength (파장) y = Asin[2pt/T]:시간 정현파 y = Asin[2px/l]: 공간 정현파 y = Asin[wt-bx]: 전자파, 광파

  10. Example • For the sinusoid given below, find: • amplitude • phase angle • angular frequency • period • frequency

  11. Solution Compare with the general sinusoid equation: Thus, we get: • amplitude is Vm= 12 V • phase angle is,  = 10 • angular frequency is,  = 50 rad/s • period is, T = 2/ = 0.1257 s • frequency is, f = 1/T = 7.958 Hz

  12. Wave and Complex Number Wave equation: Phasor: Complex number: Wave phasor: Wave's magnitude and phase at x

  13. ejq = cos(q) + jsin(q) : Euler’s Formula Profound!! Connects algebra with trig! Converts PDEs into algebraic equations!! d/dq[ej(aq)] = ja[ej(aq)] ∫dqej(aq) = ej(aq)/ja Trig identities become algebraic identities!! ejq1.ejq2 = ej(q1+q2) Complex numbers

  14. ejq = cos(q) + jsin(q) • e-jq = cos(q) - jsin(q) • cos(q) = [ejq+e-jq]/2 • sin(q) = [ejq-e-jq]/2j sin(A+B) = [ej(A+B)-e-j(A+B)]/2j = [ejA.ejB-e-jA.e-jB]/2j = ([cosA+jsinA][cosB+jsinB]-[cosA-jsinA][cosB-jsinB])/2j = ([cosAcosB+jsinAcosB+jcosAsinB-sinAsinB] -[cosAcosB-jsinAcosB-jcosAsinB+sinAsinB])/2j = sinAcosB-cosAsinB

  15. ejq = cos(q) + jsin(q) z = |z|ejq = |z|q z* = |z|e-jq = |z|-q z1z2= (|z1|ejq1)(|z2|ejq2) = |z1||z2|(q1 + q2) • zn=|z|nnq • z1/2=|z|1/2q/2 (q unknown upto2pm) • z-1=|z|-1-q • z1/z2= (|z1|ejq1)/(|z2|ejq2) = |z1|/|z2|(q1 - q2)

  16. z = a + jb a: real part, a = Re(z) b: imaginary part, b = Im(z) z* = a – jb  Complex Conjugate zz* = a2 + b2 |z| = zz* = (a2+b2)  Magnitude/Norm/Amplitude 1/z = z*/|z|2 = (a-jb)/(a2+b2)  Rationalizing z=|z|ejq= |z|(cosq + jsinq)  Phasor notation |z|cosq = a, |z|sinq = b  Components |z| = (a2+b2), q = tan-1(b/a)

  17. Complex numbers in polar form

  18. Phasor • Sinusoid: • Phasor: A complex number quantity with: • Magnitude (Z): the length of vector. • Angle () : measured from (0o) horizontal. • Written form: v의 페이저

  19. Phasor: graphical representation

  20. i(t) = 3 sin (2pft+30o) v(t) = 4 sin (q-60o) p(t) = 1 +5 sin (wt-150o) Examples

  21. Phasor: lead (앞섬), lag(지연) • A leads B • B leads C • C leads A

  22. cosine, sine 함수의 페이저 cos(wt) = Re[ejwt] →cos(wt): 1ej0 sin(wt) = Im[ejwt] = Re[-jejwt] = Re[ej(wt-p/2)] → sin(wt): 1e-jπ/2

  23. Phasor: 합, 미분, 적분, 곱 두 파동함수의 곱은 페이저로 표현되지 않는다.

  24. Phasor로부터 원래의 시간함수 복원 주파수가 100MHz, 진폭(크기)가 10V, 위상이 30°인 파동에 대해 1) 페이저를 구하라. 답: 10ej30° 2) 페이저를 복소수 평면에 도시하라. 답: 2) 파동시간함수를 구하라. 답: v(t)=10cos(2π·108t+30º)

  25. Phasor를 이용한 교류회로 해석

  26. 교류회로를 직류회로처럼 푼다 (임피던스 사용)

  27. 교류회로 연습문제 원에서 바라 본 임피던스를 실수와 허수의 합으로 표현, 크기와 위상으로 표현, 전류의 시간함수를 구하라.

More Related