370 likes | 490 Views
From individual to coupled metallic nanocavities. Adi Salomon , Yehiam Prior Weizmann Institute of Science Radoslaw Kolkowski , Marcin Zielenski , Joseph Zyss ENS- Cachan. From individual to coupled metallic nanocavities.
E N D
From individual to coupled metallic nanocavities AdiSalomon, Yehiam Prior Weizmann Institute of Science RadoslawKolkowski, MarcinZielenski, Joseph Zyss ENS-Cachan
From individual to coupled metallic nanocavities Adi Salomon, Yehiam Prior, Radoslaw Kolkowski, Marcin Zielenski, Joseph Zyss WIS, ENS-Cachan
Nanocavities In thin silver film Strong coupling and Symmetry 200nm
SHG measurements • Coherent process • Sensitive to symmetry • Non linear process Iy .
Scanning of the SHG response – Individual Cavities 5 micron ω 2ω
Size Resonances – side length dependency Experimental conditions: 200nm Ag film evaporated on glass ,(n=1.5) Excitation at : 940nm; SHG at 470nm
Size Resonances – Wavelength dependency 960 880 840 920 Counts/10 sec triangular side length = 210nm, refractive index = 1.5
Coupling between Neighboring Metallic NanoStructures
Coupling between metallic nanoparticles In analogy to atoms hybridization +- +- +- +- Energy +- +- +- + - +- +- • Gersten, J. I.; Nitzan, A. Surf Sci 1985, 158, (1-3), 165-189. • Sheikholeslami, S.; Jun, Y.-w.; Jain, P. K.; Alivisatos, A. P. Nano Letters 2010, 10, (7), 2655-2660 • Rahmani, M.; Lei, D. Y.; Giannini, V.; Lukiyanchuk, B.; Ranjbar, M.; Liew, T. Y. F.; Hong, M. H.; Maier, S. A. Nano Lett 2012, 12, (4), 2101-2106 • E. Prodan, C. Radloff, N. J. Halas,P. Nordlander Science 302, 419 (2003)
d=10nm d=15nm d=25nm d d=50nm d=250nm L. Gunnarsson et al. J. Phys. Chem. B 2005, 109, 1079-1087
Strong coupling between metallic nanocavities • Can we design nanocavities that • couple to long distances ? • How can we probe the degree of • coupling in these systems ?
Plasmonic Hybridization 500nm
Strong coupling and Symmetry 200nm 3-fold symmetry ? Reduced symmetry- when coupled
SHG response at two orthogonal polarizations Triangle side length = 200nm
SHG response at two orthogonal polarizations 200 nm 200 nm
SHG spectra with orthogonal input polarizations Counts/sec Counts/sec
SHG emission from coupled cavities 200nm 200nm The SHG emission is polarized !
Polarization sensitivity 5 microns Fundamental beam polarization: horizontal
Theoretical model (a) (b) For three fold symmetry : We define:
Summary & Conclusions • Size matters • Strong coupling is mediated by SPP
Future directions • complementarity (Babinet’s principle) • between nanoparticles and nanocavities. • What about chirality?
SHG from Metallic Nano Cavities • Joseph Zyss • Yehiam Prior Radoslaw Kolkowski Marcin Zeilenski
Thank you ! 200 nm 1 micron 1 micron 200 nm 200 nm 1 micron 1 micron 200 nm * Fabricated at WIS
Plasmonic Hybridization – In analogy to atoms hybridization 500nm * Triangular hole side length ~ 200nm
Case study: Array of individual triangles , side length 300nm 1 1 3 2 3 2
Mapping of the spots More than 2 orders of magnitude for shaped triangle ! 1 1 2 3
SHG emission patterns 100nm 100nm
Polarization properties of an individual cavity Figure 3 200nm (a) 200nm (b)
Strong coupling between nanostructures • Can we consider nanocavitiesto be simply the complementary • structures to nanoparticles? • Can we design nanostructures that lead to coherent coupling? • How can we probe the amount of coupling in these systems ?
Theoretical model (a) (b) (c) ρ=-1 ρ=-0.5 ρ=-0.1