220 likes | 329 Views
Fate and Transport of Contaminants from Acid Mine Drainage. US EPA Scientist-to-Scientist Meeting Las Vegas, NV June 14-15, 2000 Richard T. Wilkin, Ph.D. National Risk Management Research Laboratory Ada, OK. Fate & Transport Issues.
E N D
Fate and Transport of Contaminants from Acid Mine Drainage US EPA Scientist-to-Scientist Meeting Las Vegas, NV June 14-15, 2000 Richard T. Wilkin, Ph.D. National Risk Management Research Laboratory Ada, OK
Fate & Transport Issues • Chemical, Physical, and Biological Processes from Source => • Media Type • Air, Water, Sediment • Metal Type • Geochemical, Toxicity, Ore association
Chemical Processes • Dissolution, sorption, nucleation, growth • Oxidation-Reduction reactions • Acid-Base reactions • Isotope exchange reactions • Modeling exercises • Chemical Speciation • Saturation: DGr = RT lnQ/Keq • Kinetics
Physical & Biological Processes • Transport • Water • Sediment • Wind • Microbial • S-oxidizers, Fe-oxidizers • S-reducers, Fe-reducers • Wetland Plants
Metals Hg, Pb As, Se Cd, Sb, Ag, CN Cu, Zn Pb, U Cr, Fe Hg
Metal Mobility: pH Supersat. solution
Fate & Transport Topics • Kinetics/Mechanisms of S(-II) oxidation • Microbial Processes • Product Transport in Surface Waters • Product Transport/Storage in Sediments • Impact of ARD on Ground Waters • Wetlands • Supergene Processes
Pyrite Oxidation Pyrite Dissolution/Overall Reaction FeS2 + 15/4O2 + 7/2H2O = “Fe(OH)3” + 2H2SO4 Low pH, high acidity Metal rich: As, Sb, Zn, Cu… Fe, Al, Mn rich Sulfate rich
Pyrite Oxidation: II FeS2 + 7/2O2 + H2O = Fe2+ + 2SO42- + 2H+ FeS2 + 14Fe3+ + 8H2O = 15Fe2+ + 2SO42- +16H+ after Stumm and Singer (1980)
Pyrite oxidation kinetics After Langmuir (1996) using rate equations from Williamson & Rimstidt (1994), PyArea=0.05 m2/g
Pyrite Oxidation: III • Chemical • oxygen, Fe(III), water, buffering • Physical • texture, grain size • Ore processing, framboidal pyrite • Biological • Fe- and S-oxidizing bacteria
AMD Prediction(EPA 530-R-4-036, December 1994) • Assessment of Acid-generation and Acid-neutralization capacity (acid, sulfate) • Hydrologic Assessment: Availability of Oxygen and Water (acid, sulfate) • Ore Deposit/Waste rock/Tailings Characterization (metals)
Ore Deposit Types • Volcanic-hosted Massive Sulfides • Sediment-hosted Massive Sulfides • - Shale Type (Rammelsberg) • - Carbonate Type (MVT) • Mafic Intrusive Related (Sudbury, Duluth Complex) • Porphyry Cu-Mo/Skarn • Mesothermal Au • Epithermal Au • Carlin Type Au • Continental Geothermal (Hg, As, Sb) • Coals
Ore Minerals: Metal Mobilization Sources from Metal Sulfides Fe - pyrite, marcasite, pyrrhotite Hg - cinnabar Pb – galena Ag – acanthite, galena As – arsenopyrite, As-rich pyrite, orpiment, tetrahedrite, enargite Ni – pentlandite, millerite Cu – covellite, chalcocite, djurleite, bornite, chalcopyrite, enargite Cd – greenockite Zn – spahlerite Co – cobaltite
Transport of OxidationProducts to Surface Waters Sorption trend onto Fe ppt Pb>Hg>Ag>As>Ni>Cu>Cd>Zn
Wetland Processes Other ORD work at SPRD: T. Canfield et al. Constructed Wetlands
AMD Related Secondary Precipitates pKsp Alunite KAl3(SO4)2(OH)6 84 Anglesite PbSO4 7.8 Anhydrite CaSO4 4.4 Coquimbite Fe2(SO4)3·9H2O 3.6 Gibbsite Al(OH)3 33.9 Goethite FeOOH 24 Jarosite KFe3(SO4)2(OH)6 95 Melanterite FeSO4·7H2O 2.2 Schwertmannite Fe(III), Fe(II)OH SO4 ? Sulfur S8
Ground Water/Anoxic LimestoneDrains High Fe(II)/Fe(III) pH 2-6, low O2 Al, Metals GW Surface High O2 Fe(II)=>Fe(III) Fe(OH)3 ppt alk takes up acid Limestone Drain • Calcite dissolution • Alkalinity production • Retain Anoxic (FeII/FeIII) • pH increase