1 / 35

Understanding and managing acid mine drainage

Understanding and managing acid mine drainage. Dr Talitha Santini (t.santini@uq.edu.au) Lecturer, School of Geography, Planning, and Environmental Management and Centre for Mined Land Rehabilitation, UQ. Mt Morgan map. pH 3.2 (≈ lemon juice). Al: 730 mg/L Fe: 250 mg/L Cu: 35 mg/L

zander
Download Presentation

Understanding and managing acid mine drainage

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Understanding and managing acid mine drainage Dr Talitha Santini (t.santini@uq.edu.au) Lecturer, School of Geography, Planning, and Environmental Management and Centre for Mined Land Rehabilitation, UQ

  2. Mt Morgan map

  3. pH 3.2 (≈ lemon juice) Al: 730 mg/L Fe: 250 mg/L Cu: 35 mg/L Mn: 80 mg/L SO42-: 11500 mg/L

  4. Outline • Acid mine drainage: • How does it occur? • How do we manage or prevent it? Mount Morgan as a case study to illustrate

  5. History of Mt Morgan Largest gold mine in Australia • 1881: Gold discovered • 1882: Mining started • Initially underground then open cut • 1906: Cu production • 1981: Extraction ended • 247 T Au • 390,000 T Cu • 37 T Ag Image courtesy Crystal Jasperson, DEEDI

  6. Image courtesy Crystal Jasperson, DEEDI

  7. Copper extraction http://www.youtube.com/watch?v=89r8fIR34Gc

  8. Copper extraction Chalcopyrite (CuFeS2); 80% Rankin WJ (2011) Minerals, metals and sustainability. CSIRO Publishing, Collingwood Australia, 419 p.

  9. Copper extraction Copper oxides; 20% Rankin WJ (2011) Minerals, metals and sustainability. CSIRO Publishing, Collingwood Australia, 419 p.

  10. Mining • Most deposits exploited by surface mining • Ore typically crushed and concentrated via froth flotation to separate copper sulfides prior to further processing Escondida, Chile Chuquicamata, Chile http://www.riotinto.com/ourbusiness/escondida-4740.aspx#; www.miningaustralia.com.au/features/world-s-largest-copper-mine-moves-underground-imag

  11. Froth flotation CuFeS2 tailings Rankin WJ (2011) Minerals, metals and sustainability. CSIRO Publishing, Collingwood Australia, 419 p; http://advanceseng.com/chemical-engineering/the-use-of-rhamnolipid-biosurfactants-as-a-frothing-agent-and-a-sample-copper-ore-response/; http://web.utk.edu/~ammonst/research.html

  12. Smelting SO2 (SiO2) 2CuFeS2 + 4O2 + SiO2 → Cu2S + Fe2SiO4 + 3SO2 Cu2S Fe2SiO4 Rankin WJ (2011) Minerals, metals and sustainability. CSIRO Publishing, Collingwood Australia, 419 p.

  13. British Geological Survey (2007) Mineral profile: Copper. National Environment Research Council, Swindon UK. http://www.bgs.ac.uk/downloads/start.cfm?id=1410

  14. Mine closure • 1990: Mine closure • 1992: QLD Govt accepts liability for the site • 2000: Commencement of rehabilitation studies • 2003: Rehab Plan developed • Site is managed under the QLD Government’s Abandoned Mines Land Program Images courtesy Crystal Jasperson, DEEDI

  15. Image courtesy Crystal Jasperson, DEEDI

  16. Management • Water: AMD seepage and spills, water-filled pit • Overflowed in Jan 2013 • 87000 ML released into Dee River • 25000 fish killed • Impacts up to 65 km downstream

  17. Management • Water: AMD seepage and spills, water-filled pit • Heritage: building maintenance, OHS • Land: weeds, pests, fire risks • Social: historical value, economic transition in town

  18. Chalcopyrite: CuFeS2 Chalcocite: Cu2S Pyrite: FeS2

  19. Pyrite FeS2

  20. Acid mine drainage (AMD) • Oxidation of sulfides (esp. pyrite) on exposure to O2(g) generates acid: 2FeS2(s) + 7O2(g) + 2H2O(l) 2Fe2+(aq) + 4SO42-(aq) + 4H+(aq) 4Fe2+(aq) + O2(g) + 4H+(aq) 4Fe3+(aq) + 2H2O(l) Fe3+(aq) + 3H2O(l) Fe(OH)3(s) + 3H+(aq) FeS2(s) + Fe3+(aq) + 8H2O(l) 2Fe2+(aq) + 2SO42-(aq) + 16H+(aq) Rate limiting step; microbially mediated

  21. 4Fe2+(aq) + O2(g) + 4H+(aq) 4Fe3+(aq) + 2H2O(l) Ferroplasmaacidarmanus: isolated from a mixed metal sulfide mine; optimum growth pH 1.2; pH lower limit 0 Leptospirillumferrooxidans: isolated from a mixed metal sulfide mine; optimum growth pH 3; pH lower limit 1.5 Edwards et al. (2000) Science, 287, 1796-1799; Schrenk et al. (1998) Science, 279, 1519-1522 Image courtesy Mansour Edraki, CMLR

  22. Acid mine drainage (AMD) • Oxidation of sulfides (esp. pyrite) on exposure to O2(g) generates acid: 2FeS2(s) + 7O2(g) + 2H2O(l) 2Fe2+(aq) + 4SO42-(aq) + 4H+(aq) 4Fe2+(aq) + O2(g) + 4H+(aq) 4Fe3+(aq) + 2H2O(l) Fe3+(aq) + 3H2O(l) Fe(OH)3(s) + 3H+(aq) FeS2(s) + Fe3+(aq) + 8H2O(l) 2Fe2+(aq) + 2SO42-(aq) + 16H+(aq) Rate limiting step; microbially mediated

  23. Acid mine drainage (AMD) Mamut copper mine, Malaysia My Lyell copper mine, Tasmania http://epa.tas.gov.au/epa/mt-lyell-acid-drainage-remediation; http://www.thestar.com.my/story.aspx/?file=%2f2007%2f10%2f2%2flifefocus%2f18911210&sec=lifefocus

  24. Grey (1997) Environmental impact and remediation of acid mine drainage: a management problem. Environ Geol30, 62-71.

  25. Management options - prevention 2FeS2(s) + 7O2(g) + 2H2O(l) 2Fe2+(aq) + 4SO42-(aq) + 4H+(aq) 4Fe2+(aq) + O2(g) + 4H+(aq) 4Fe3+(aq) + 2H2O(l) Fe3+(aq) + 3H2O(l) Fe(OH)3(s) + 3H+(aq) FeS2(s) + Fe3+(aq) + 8H2O(l) 2Fe2+(aq) + 2SO42-(aq) + 16H+(aq) Johnson and Hallberg (2005) Acid mine drainage remediation options: a review. Sci Tot Environ 338, 3-14.

  26. Management options - prevention Johnson and Hallberg (2005) Acid mine drainage remediation options: a review. Sci Tot Environ 338, 3-14.

  27. Management options - remediation Hydrated lime: Ca(OH)2(s) + 2H+(aq) + SO42-(aq) CaSO4(s) + 2H2O(l) Limestone: CaCO3(s)+ 2H+(aq) + SO42-(aq) CaSO4(s) + H2O(l) + CO2(g) Johnson and Hallberg (2005) Acid mine drainage remediation options: a review. Sci Tot Environ 338, 3-14.

  28. Hydrated lime (Ca(OH)2) dosing plant: 3 ML/day of water treated Ca(OH)2(s) + 2H+(aq)+SO42-(aq)CaSO4(s) + 2H2O(l)

  29. Evaporators: treat 2 ML/day Ca(OH)2(s) + 2H+(aq) + SO42-(aq)CaSO4(s) + 2H2O(l)

  30. Management options - remediation CH2O + SO42- + 3H+ → S2-+ 2H2O + HCO3- Fe3+ → Fe2+ S2-+ M2+ → MS FeS SO42- → S2- Johnson and Hallberg (2005) Acid mine drainage remediation options: a review. Sci Tot Environ 338, 3-14.

  31. Fe3+, H+, Na+, Cu2+, Cl-, SO42- Na+, Cl-, DOC 2CH2O + SO42- + 2H+ → H2S + 2H2O + 2CO2 H2S + M2+ → MS + 2H+ Biological treatment wetlands Degens (2009) Images courtesy Brad Degens

  32. Fe3+, H+, Na+, Al3+, Pb4+, Cl-, SO42- Na+, Al3+, Cl-, DOC Inflow pH 2.8-3.5 Outflow pH 4.0-6.5 2CH2O + SO42- + 2H+ → H2S + 2H2O + 2CO2 H2S + M2+ → MS + 2H+ Biological treatment wetlands Degens (2009) Images courtesy Brad Degens

  33. Fe3+, H+, Na+, Al3+, Pb4+, Cl-, SO42- Na+, Al3+, Cl-, DOC Inflow pH 2.8-3.5 Outflow pH 4.0-6.5 2CH2O + SO42- + 2H+ → H2S + 2H2O + 2CO2 H2S + M2+ → MS + 2H+ Biological treatment wetlands FeS2 Degens (2009) Images courtesy Brad Degens

  34. Summary • Acid mine drainage (AMD) is caused by oxidation of sulfides • Common in copper sulfide deposits • Treatment can be active or passive, using abiotic or biotic approaches After lunch: lab session! Learn how to calculate treatment rates for AMD

More Related