250 likes | 470 Views
6-3: Complex Rational Expressions. complex rational expression (fraction) – contains a fraction in its numerator, denominator, or both. Method 1: Find LCD of all denominators, then multiply both the numerator and denominator by the LCD. Ex 1:. Multiply numerator and denominator by LCD.
E N D
6-3: Complex Rational Expressions complex rational expression (fraction) – contains a fraction in its numerator, denominator, or both.
Method 1: Find LCD of all denominators, then multiply both the numerator and denominator by the LCD. Ex 1: Multiply numerator and denominator by LCD LCD = y y Distribute y
Ex 2: Multiply numerator and denominator by LCD LCD = Distribute factor
Ex 3: Multiply numerator and denominator by LCD LCD = Distribute Factor
LCD = Ex 4: Rewrite with positive exponents Multiply numerator and denominator by LCD Distribute factor
Ex 5: Multiply numerator and denominator by LCD LCD = Distribute
Method 2: Simplify the numerator and denominator separately, then use division and multiply by reciprocal. Add fractions in numerator and denominator. Ex 6: LCD = Multiply by reciprocal
Ex 7: Simplify the numerator and denominator Factor Multiply by reciprocal
Ex 8: Simplify the numerator and denominator Factor Multiply by reciprocal
Ex 9: Simplify the numerator and denominator Factor Multiply by reciprocal
6-3 Summary Method 1: Find LCD of all denominators, then multiply both the numerator and denominator by the LCD. Method 2: Simplify the numerator and denominator separately, then use division and multiply by reciprocal.