782 likes | 2.11k Views
HOGERE ZEEVAARTSCHOOL A NTWERPEN. Chapitre 4 La Courbe de Stabilité Statique. Presented by : Capt.J.F.Stokart Last updated : 02/2007. 4.1 INTRODUCTION. Jusqu’à ± 7° le moment de stabilité transversale statique du navire peut être calculée au moyen de cette formule :
E N D
HOGERE ZEEVAARTSCHOOL ANTWERPEN Chapitre 4La Courbe de Stabilité Statique Presented by : Capt.J.F.Stokart Last updated : 02/2007
4.1 INTRODUCTION • Jusqu’à ± 7° le moment de stabilité transversale statique du navire peut être calculée au moyen de cette formule : Moment Stabilité = Δ * GZ = Δ * GM * sin θ • Pour un Δ donné, le moment de stabilité est fonction de la longueur du bras de levier GZ du couple (redressant ici) • GZ – à son tour – dépend de la distance GM ; une grande/petite distance GM produira une grande/petite distance GZ (voir à droite) GM est donc un critère permettant de déterminer la stabilité du navire mais pour un angle d’inclinaison θ inférieur à ± 7° Chapitre 4
4.1 INTRODUCTION • Jusqu’à ± 7°, le métacentre M est considéré comme étant un point FIXE dans le plan longitudinal • Rappel : le métacentre (transversal/longitudinal) est … • Aux inclinaisons > 7°, le métacentre transversale s’éloigne du plan longitudinal • M “monte” selon une courbe pour ensuite “descendre” rapidement (voir figure) • Aux grandes inclinaisons, la stabilité transversale statique ne peut plus être calculée au moyen de GM ! (Pourquoi ?) Chapitre 4
4.1 INTRODUCTION • A chaque inclinaison du navire correspond un bras de levier GZ du couple de stabilité (pour un déplacement déterminé) • Dans un premier temps, la grandeur GZ augmente avec l’inclinaison du navire • GZ atteint une valeur maximale, puis diminue à des inclinaisons supérieures • Afin d’apprécier la stabilité d’un navire aux grandes inclinaisons, l’évolution du bras de levier donne une bonne indication Chapitre 4
4.1 INTRODUCTION Il est important de connaitre la stabilité du navire aux grandes inclinaisons ; un navire qui a un GM initial satisfaisant n’est pas nécessairement un navire “sûr” aux grandes inclinaisons Chapitre 4
4.2 LA COURBE DE STABILITE STATIQUE • Afin de représenter la grandeur du bras de levier aux différentes inclinaisons, on utilise une “courbe de stabilité”. GZ On appelle “Courbe de Stabilité” d’un navire, la courbe représentant – pour un déplacement donné et une position déterminée du centre de gravité – les variations du bras de levier GZ du couple de stabilité en fonction des angles d’inclinaison θ La courbe de stabilité n’est généralement pas une courbe algébrique, il faut la déterminer par points. Chapitre 4
4.2 LA COURBE DE STABILITE STATIQUE Selon l’échelle des ordonnées (Y) la même courbe peut également représenter la variation du moment de stabilité (Δ*GZ) Δ*GZ GZ Courbe GZ Courbe des moments de stabilité Chapitre 4
4.2 LA COURBE DE STABILITE STATIQUE GZ (m) Heel (°) Chapitre 4
4.2 LA COURBE DE STABILITE STATIQUE Chapitre 4
4.2 LA COURBE DE STABILITE STATIQUE Les bras de levier GZ doivent être suffisamment grand pour permettre au navire de résister aux inclinaisons générées par des forces externes (vent, houle, abordage, etc…) • La courbe doit être tracée et analysée : • Avant début chargement / déchargement / (dé) ballastage • Avant le départ du navire afin de prévoir la stabilité du navire en mer et à l’arrivée au port de destination. Chapitre 4
4.2 LA COURBE DE STABILITE STATIQUE GZ Curve • Le “Stability Booklet” ou “Loading Manual” du navire renseigne les courbes de stabilité statique pour différentes conditions de chargement Rappel : chaque courbe correspond à une (seule) condition de chargement (déplacement et GM ou KG correspondant) Chapitre 4
4.2.1 ANALYSE DE LA COURBE DE STABILITE • Les points suivants sont pris en considération lors de l’analyse d’une courbe GZ : • Allure de la courbe au voisinage de l’origine (jusqu’à ± 7°) : nous renseigne sur la stabilité initiale GM Si la pente de la courbe est élevée, la stabilité initiale (GM) est grande et inversement. Ceci ne donne cependant pas d’indication concernant la stabilité aux grandes inclinaisons. Chapitre 4
4.2.1 ANALYSE DE LA COURBE DE STABILITE • La valeur maximale du bras de levier et l’angle correspondant (Maximum righting lever and the angle at which it occurs) Pour cette condition de chargement, GZ max est de 0.57 m à un angle d’inclinaison de 40° environ. La courbe de stabilité présente un maximum et deux valeurs nulles : l’une à l’origine (navire droit), position d’équilibre stable, l’autre pour un angle θ dit « angle de chavirement statique » (AVS Angle of Vanishing Stability), position d’équilibre instable. Chapitre 4
4.2.1 ANALYSE DE LA COURBE DE STABILITE • L’angle de chavirement statique (AVS) et la plage de stabilité (Angle of Vanishing Stability and the range of stability) AVS : Vers 63°, il n’existe plus de moment de stabilité. Plage de stabilité 63° Chapitre 4
4.2.1 ANALYSE DE LA COURBE DE STABILITE • Le point d’inflexion renseigne l’angle auquel le livet de pont est immergé Deck edge immersion : circa 23° Chapitre 4
4.2.1 ANALYSE DE LA COURBE DE STABILITE • Le travail devant être produit par le couple de stabilité (couple redressant) - de 0° à un angle θ° - afin de résister au moment inclinant ≥ 9 cmrad Plus tard… Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER • Afin d’apprécier la stabilité du navire pour chaque condition de chargement, il est donc nécessaire de connaitre les grandeurs des bras de levier aux différentes inclinaisons. • Ces valeurs sont comparées aux critères minima recommandés par l’OMI (Voir dia suivante) • La courbe statique des bras de levier est déterminée à l’aide des “courbes (tables) pantocarènes”… Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER IMO CRITERIA FOR INFO ONLY Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER • Dans cette figure, GZ est le bras de levier du couple de stabilité pour : • l’angle d’inclinaison θ • une distance KG donnée • Le constructeur naval établit des « courbes pantocarènes » permettant de calculer facilement les valeurs GZ aux différentes inclinaisons. Chapitre 4
Pour 1 déplacement et 1 valeur KG standard (ici 9 m) nous pouvons déterminer les bras de levier GZ pour différentes inclinaisons (ici de 0° à 90°). Les valeurs obtenues sont ensuite mises en graphique : c’est la “courbe des bras de levier de stabilité statique”. 4.3.2 LES COURBES KN Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER WHAT IF… KG’ > KG KG’ < KG Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER KG’ > KG KG’ < KG G1Z1 < GZ G1Z1= GZ – Gx G1Z1 = GZ – GG1 sin θ G2Z2 > GZ G2Z2= GZ + G2y G2Z2 = GZ + GG2 sin θ Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER G1Z1 = GZ – GG1 sin θ G2Z2 = GZ + GG2 sin θ • KG actuel > 9 m : les bras de levier seront RACCOURCIS • KG actuel < 9 m : les bras de levier seront AGRANDIS • Corrections : sont données dans la table ci-dessus pour des différences de 1 m entre le KG de référence et le KG actuel • Pour différence entre KG’s >< 1m, multiplier la correction par la différence entre KG’s (ex : si différence = 1.50m, multiplier par 1.5) Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER Exemple Mv Ship ; Deplacement 38000 t. KG 8.50 m Demandé : bras GZ tous les 15° (au moyen des courbes GZ de la dia suivante) KG 8.50m KG courbe : 9.00m Différence : 0.50m Correction = + Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER Correction d’une courbe existante G1Z = GZ + GG1 sin θ G2Z = GZ – GG2 sin θ Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER Exemple • Les valeurs GZ pour un déplacement & valeur KG sont : Demandé : • Tracez la courbe de stabilité de ce navire • Tracez la courbe pour KG’ = KG + 0.16 m (le déplacement reste constant) • Tracez la courbe pour KG’ = KG - 0.16 m (le déplacement reste constant) Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER Demandé : • Tracez la courbe de stabilité de ce navire • Tracez la courbe pour KG’ = KG + 0.16 m (le déplacement reste constant) • Tracez la courbe pour KG’ = KG - 0.16 m (le déplacement reste constant) Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER Curve for GM Curve for GM+0.16m Curve for GM-0.16m Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER • Les courbes GZ sont des courbes établies pour une valeur KG définie • Dans certains cas, cette courbe est tracée pour une valeur KG nulle • Ces courbes sont appelées “courbe KN”, KN représentant la bras de levier du couple au niveau de la quille. Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER GZ = bras de levier du couple de stabilité à un angle θ GZ = KN – Kx Dans triangle rectangle GKx : Kx = KG sin θ GZ = KN – KG sin θ x Le constructeur du navire établit un diagramme (des tables) permettant de déterminer facilement KN (les “Cross curves of stability”) Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER Chapitre 4
4.3 CALCUL DES BRAS DE LEVIER A bord des navires modernes, les livrets de stabilité ne renseignent plus les courbes pantocarènes mais les “tables KN” Chapitre 4
4.4 LE TRACE DE LA COURBE PROCEDURE FOR CONSTRUCTING THE CURVE OF STATICAL STABILITY The following steps should always be undertaken when producing a curve of statical stability. • Determine the ship’s displacement and corrected KG for free liquid surfaces in tanks). • From the hydrostatic data find KM for the ship’s displacement. • Find corrected GM (GM FLUID) using: GM = KM – KG FLUID • Enter KN tables and obtain KN value in metres for each angle of heel given • Using: GZ = KN - (KG Sine ) determine the GZ values for the angles of heel given. Chapitre 4
4.4 LE TRACE DE LA COURBE The following steps should always be undertaken when producing a curve of statical stability. • Plot the GZ values. • Si l’on désire tracer avec précision l’allure de la courbe au voisinage de l’origine, nous procéderons comme suit : • Tracez une verticale représentant GMo à un angle de 57°3 (si GMo est négatif, cette verticale sera dirigée vers le bas) • Joindre le sommet de cette verticale à l’origine des axes X,Y • Ce segment de droite est la tangente à la courbe jusqu’ 7° (environ) (GZ and GM are closely related at small angles of heel.) Chapitre 4
4.4 LE TRACE DE LA COURBE The curve for the GZ values calculated in following exercise 1 is shown. Note the construction using the initial GM value of 0.54 m. Chapitre 4
4.5 QUESTIONS Exercise 1mv Argonaut completes loading with a displacement of 29000 t and a KG corrected for free surfaces of 8.92 m. Calculate the GZ values (Use following tabulated KN values) Chapitre 4
4.5 QUESTIONS Solution 1 Using the formula: GZ = KN - (KG Sine ) calculate the GZ values for the loaded condition. Fluid KG must always be used to calculate GZ values. When KN values are tabulated, interpolation for displacement values other than those stated should be done, but it should be borne in mind that the rate of change of KN is not linear. If the KN values for mv Argonaut were plotted, they would be curves - not straight lines! However, any errors caused by interpolation of KN table values are likely to be negligible. Chapitre 4
QUESTIONS ? Chapitre 4