330 likes | 427 Views
QCD and Hadronic Physics Beijing, June 16-20, 2005. Jet Tomography of Strongly Interacting QGP. Xin-Nian Wang 王新年 Lawrence Berkeley National Laboratory. QCD phase transition. scale anomaly (break scale invariance). Asymptotic freedom. Confinement. Lattice QCD results. F. Karsch ‘2001.
E N D
QCD and Hadronic PhysicsBeijing, June 16-20, 2005 Jet Tomography of Strongly Interacting QGP Xin-Nian Wang 王新年 Lawrence Berkeley National Laboratory
QCD phase transition scale anomaly (break scale invariance) Asymptotic freedom Confinement
Lattice QCD results F. Karsch ‘2001
Medium Response Dynamic System: Photon or dilepton emission (McLerran & Toimela’85) J/Y suppression (Matsui & Satz’86) QCD Response: Parton scattering (Gyulassy & XNW’92)
Jet Quenching & Modified Fragmentation e- Guo & XNW’00
Non-Abelian LPM Effect i j Formation time Two-parton correlation: Landau- Pomeranchuck-Migdal interference:
HERMES data E. Wang & XNW 2000
Parton Energy Loss BDPM Gyulassy Vitev Levai Wang & Wang Wiedemann; Zakharov Quark energy loss = energy carried by radiated gluon
HERMES data E. Wang & XNW 2000 in Au nuclei
Geometry of dense matter jet jet Azimuthal asymmetry Non-central collisions
Dihadron Correlation Pedestal&flow subtracted Pedestal&flow subtracted trigger Df pTtrig=4-6 GeV pT=2-4 GeV
Away-side suppression trigger Df
Elliptic flow of a perfect fluid Pressure gradient anisotropy Hydrodynamic calculation with h=0
Jet Remnants q Induced Bremsstrahlung: qM Pedestal&flow subtracted Cherenkov radiation
3-D Tomography Z.-T. Liang, XNW PRL 94 (2005)102301 Dx Global polarization w.r.t. Nuclear reaction plane
Summary • Discovery of Jet Quenching at RHIC proves that a interacting dense matter is formed: Opaque to jets • Dense matter at RHIC is 30 times higher than cold nuclei, energy density is 100 times higher • Collective behavior: Hydrodyamic limit strongly interactive QGP • Jet tomography a useful and power tool for studying properties of dense matter • Heavy quarks, dihadron correlation, angular distribution, flavor dependence …
Angular distribution of radiative gluons q Induced Bremsstrahlung: Radiation in vacuum Further interaction of the radiated gluons with the medium?
Di-hadron fragmentation function h1 h2 jet Majumder & XNW
Modification of the dihadron distribution STAR preliminary Pedestal&flow subtracted z Effect of longitudinal flow C. Salgado
Sonic Boom Casalderrey-Solana, Shuryak and Teaney Linearize disturbance qM Trigger
Future of Jet quenching STAR preliminary STAR preliminary g+jet correlation in Au+Au in run4? More accurate determination of initial Et
Modification for Heavy Quarks (1) Slow clock for formation time (2) Color factor (3) Dead cone effect DEQ<DEg, DEq Djordjevic & Gyulassy Zhang & XNW Armesto,Dainese, Salgado & Wiedemann Zhang & XNW
Energy Dependence of quenching D. d’Enterria, Hard Probes 2004
Effect of non-Abelian energy loss Eskola Honkanen Salgado Wiedemann Qun Wang & XNW nucl-th/0410079 Fixed pT=6 GeV DEg=DEq DEg=2DEq
No suppression in d+Au STAR PHENIX
High pt spectra in Au+Au H. Zhang,E. Wang J. Owens, XNW 2005
High pt spectra in pp collisions H. Zhang J. Owens E. Wang XNW 2005
Charm quark Large charm quark Suppression? Hadronic scattering?
Parton recombination Hwa; Fries Particle or parton correlations are not trivial