1 / 54

Klaus Jungmann RAL, January 2005 Fundamental Interactions

Klaus Jungmann RAL, January 2005 Fundamental Interactions. Fundamental Symmetries and Interactions. Beta Beam Workshop Rutherford Appleton Laboratory,17-18 of January, 2005. Forces and Symmetries Fundamental Fermions Discrete Symmetries Properties of Known Basic Interactions

Download Presentation

Klaus Jungmann RAL, January 2005 Fundamental Interactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Klaus Jungmann RAL, January 2005 Fundamental Interactions

  2. Fundamental Symmetries and Interactions Beta Beam WorkshopRutherford Appleton Laboratory,17-18 of January, 2005 • Forces and Symmetries • Fundamental Fermions • Discrete Symmetries • Properties of Known Basic Interactions •  only touching a few examples Klaus Jungmann, Kernfysisch Versneller Instituut,Groningen

  3. of NuPECC working group 2003 Recommendations Physics Topics • Theoretical Support • Positions at Universities • Experimentalists and Theorists • High Power Proton Driver • Several MW • Target Research • Cold and Ultracold Neutrons • Low Energy Radioactive Beams • Improved Trapping Facilities • Underground Facilities Adequate Environment Human resources Facilities • The Nature of Neutrinos • Oscillations/ Masses/ 0n2b-decay • T and CP Violation • edm’s, D (R) coeff. in b-decays, D0 • Rare and Forbidden Decays • 0n2b-decay, n-nbar, M-Mbar, meg, • m 3e, m N N e • Correlations in b-decay • non V-A in b-decay • Unitarity of CKM-Matrix • n-, p-b, (superallowed b), K-decays • Parity Nonconservation in Atoms • Cs, Fr, Ra, Ba+, Ra+ • CPT Conservation • n, e, p, m • Precision Studies within The Standard Model • Constants, QCD,QED, Nuclear Structure

  4. Relating to a MW Proton Machine Recommendations Physics Topics • Theoretical Support • Positions at Universities • Experimentalists and Theorists • High Power Proton Driver • Several MW • Target Research • Cold and Ultracold Neutrons • Low Energy Radioactive Beams • Improved Trapping Facilities • Underground Facilities Adequate Environment Human resources Facilities • The Nature of Neutrinos • Oscillations/ Masses/ 0n2b-decay • T and CP Violation • edm’s, D (R) coeff. in b-decays, D0 • Rare and Forbidden Decays • 0n2b-decay, n-nbar, M-Mbar, meg, • m 3e, m N N e • Correlations in b-decay • non V-A in b-decay • Unitarity of CKM-Matrix • n-, p-b, (superallowed b), K-decays • Parity Nonconservation in Atoms • Cs, Fr, Ra, Ba+, Ra+ • CPT Conservation • n, e, p,m • Precision Studies within The Standard Model • Constants, QCD,QED, Nuclear Structure

  5. Standard Model • 3 Fundamental Forces • ElectromagneticWeak Strong • 12 Fundamental Fermions • Quarks, Leptons • 13 Gauge Bosons • g,W+, W-, Z0, H, 8 Gluons ? What are we concerned with ? fundamental := “ forming a foundation or basis a principle, law etc. serving as a basis” • However • many open questions • Why 3 generations ? • Why some 30 Parameters? • Why CP violation ? • Why us? • ….. • Gravitynot included • No Combind Theory of • Gravity and Quantum Mechanics

  6. Fundamental Fermions • Neutrinos • Neutrino Oscillations • Neutrino Masses • Quarks • Unitarity of CKM Matrix • Rare decays • Baryon Number • Lepton Number/Lepton Flavour • New Interactions in Nuclear and Muon b-Decay

  7. Superkamiokande SNO Neutrino-Experiments • Recent observations could be explained by oscillations of massive neutrinos. • Many Remaining Problems • really oscillations ? • sensitive to Dm2 • Masses of Neutrino • Nature of Neutrino • Dirac • Majorana •  Neutrinoless Double b-Decay • Direct Mass Measurements • are indicated  Spectrometer • Long Baseline Experiments • b-beams • new neutrino detectors ?

  8. Directional sensitivity • for low energies ? • Air shower ? • Salt Domes ? from R. de Meijer & A. v.d. Berg Neutrino-Experiments Are there new detection schemes ? • Water Cherenkov • Scintillators • Liquid Argon • . . . Only for Non- Accelerator Neutrinos ? 13?

  9. CUORICINO Neutrinoless Double b-Decay (A,Z)  (A,Z+2) + 2e- 1/T 1/2 = G0n (E0,Z) | MGT + (gV/gA)2 ·MF|2<mn>2 • confirmation of Heidelberg-Moscow • needed • independent experiment(s) with different • technologies required • need nuclear matrix elements

  10. Direct n mass Measurements: Towards KATRIN Present Limit : m(ne) < 2.2 eV (95% C.L.) KATRIN sensitivity : some 10 times better

  11. Fundamental Fermions • Neutrinos • Neutrino Oscillations • Neutrino Masses • Quarks • Unitarity of CKM Matrix • Rare decays • Baryon Number • Lepton Number/Lepton Flavour • New Interactions in Nuclear and Muon b-Decay

  12. CKM Matrix couples weak and mass quark eigenstaes: Often found: 0.221(6) 0.9739(5) Nuclear b-decays D = 0.0032 (14) ? Unitarity: -D • Neutron decay • = 0.0083(28) • = 0.0043(27) -D Unitarity of Cabbibo-Kobayashi-Maskawa Matrix If you pick your favourite Vus !

  13. Vus Unitarity of Cabbibo-Kobayashi-Maskawa Matrix A. Czarnecki W. Marciano, A. Sirlin, Hep-ph/0406324

  14. Experimental Possibilities 0.9737(39) 0.9729(12) Nuclear b-decays D = 0.0032 (14) ? • Neutron decay • = 0.0083(28) • = 0.0043(27) Unitarity of Cabbibo-Kobayashi-Maskawa Matrix

  15. Fundamental Fermions • Neutrinos • Neutrino Oscillations • Neutrino Masses • Quarks • Unitarity of CKM Matrix • Rare decays • Baryon Number • Lepton Number/Lepton Flavour • New Interactions in Nuclear and Muon b-Decay

  16. nm ne e.g. through: m e W g A.A. Godzev et al., Phys.Lett B338, 212 (1994) Do Neutrino Oscillations Imply Charged Lepton Number Violations within Standard Theory ?  no real chance yet BUT Higher values predicted in Speculative Models

  17. qeg = 180° e+ +g Ee= Eg=52.8MeV The MEG experiment at PSIaims for m  e g Easy signal selection with +at rest • Detector outline • Stopped beam of >107 /sec in a 150 mm target • Liquid Xenon calorimeter for  detection (scintillation) • fast:4 / 22 / 45 ns • high LY: ~ 0.8 * NaI • short X0:2.77 cm • Solenoid spectrometer & drift chambers fore+ momentum • Scintillation counters for e+ timing

  18. Straw Tracker Muon Stopping Target Muon Beam Stop Superconducting Transport Solenoid (2.5 T – 2.1 T) Crystal Calorimeter Superconducting Production Solenoid (5.0 T – 2.5 T) Superconducting Detector Solenoid (2.0 T – 1.0 T) Muon Production Target Collimators : 4 x 1013 incident p/sec 1 x 1011 stopping µ/sec Proton Beam Heat & Radiation Shield - Ne- N Future plans MECO detector (>2010 ?)

  19. Muon Physics Possibilities at Any High Power Proton Driver i.e.  4 MW < < < <

  20. Fundamental Fermions • Neutrinos • Neutrino Oscillations • Neutrino Masses • Quarks • Unitarity of CKM Matrix • Rare decays • Baryon Number • Lepton Number/Lepton Flavour • New Interactions in Nuclear and Muon b-Decay

  21. Vector [Tensor] Scalar [Axial vector] b+ ne b+ ne New Interactions in Nuclear and Muon b-Decay In Standard Model: Weak Interaction is V-A In general b-decay could be also S , P, T • nuclear b-decays, Experiments in Traps • muon decays, Michel parameters

  22. Traps for weak interaction physics : 1. Atom traps : - TRIUMF-ISAC, 38mK, -correlation (J. Behr et al.) A. Gorelov et al., Hyperfine Interactions 127 (2000) 373 - LBNL & UC Berkeley, 21Na, -correlation (S.J. Freedman et al.) N. Scielzo, Ph. D. Thesis (2003) - LANL Los Alamos, 82Rb, -asymmetry (D. Vieira et al.) S.G. Crane et al., Phys. Rev. Lett. 86 (2001) 2967 - KVI-Groningen, Na, Ne, Mg, D-coefficient (K. Jungmann et al.) Ra, EDM experiment G.P. Berg et al., NIM B204 (2003) 526 2. Ion traps : - LPC-Caen, 6He, -correlation (O. Naviliat-Cuncic et al.) G. Ban et al., NIM A518 (2004) 712 - WITCH, Leuven-ISOLDE, 35Ar, -correlation (N. Severijns et al.) D. Beck et al., Nucl. Inst. Methods Phys. Res., A 503 (2003) 567 - CPT-trap Argonne, 14O, -correlation (G. Savard et al.) G. Savard et al., Nucl. Phys. A654 (1999) 961c - ISOLTRAP-CERN, mass for 0+  0+ decays (K. Blaum et al.) from N. Severijns

  23. 4 3 1 2 TRIUMF LPC CAEN Some TRAPS for Weak Interaction Studies

  24. Vector [Tensor] Scalar [Axial vector] b+ ne b+ ne New Interactions in Nuclear and Muon b-Decay In Standard Model: Weak Interaction is V-A 21Na Berkeley: Scielzo,Freedman, Fujikawa, Vetter PRL 93, 102501-1 (3 Sep 2004) a exp = 0.5243(91) a theor = 0.558(6) In general b-decay could be also S , P, T ?? 38mK TRIUMF A. Gorelov et al. nucl-ex/0412032(14 Dec 2004) a exp = 0.9978(30)(37) a theor = 1 • nuclear b-decays, Experiments in Traps • muon decays, Michel parameters

  25. TRImP Magnetic separator D Q Q D Wedge Q Q Q D Q D Production target Q Q Ion catcher (gas-cell or thermal ioniser) AGOR cyclotron RFQ cooler/buncher MOT Low energy beam line Combined Fragment and Recoil Separator MOT

  26. TRIP Separator commissioning 21Na Na Energy (a.u.) 20Ne Energy (arb. units) 0 10 20 30 40 50 F Ne O 0 10 20 30 40 50 Time (arb. units) 0 10 20 30 40 Time (arb. units) Time (a.u.) Detector 1 Dispersive plane QD DD QD T1 AGOR beam B = p/q  v A/Z TOF  A/Z E  A2 Yield of 21Na at the focal plane: 5.3 MHz/kW Now achieved: > 99% 21Na

  27. Muon Decay: Michel Parameters TRIUMF Weak Interaction Symmetry Test: “TWIST” http://twist.triumf.ca/~e614/experiment.html tracking of e+ from polarized muon decay goal: detemine r, d, Pmx with a relative precision at the 10-4 level prelim. results expected in 2004 from O. Naviliat-Cuncic

  28. Discrete Symmetries • Parity • Parity Nonconservation in Atoms • Nuclear Anapole Moments • Parity Violation in Electron-Scattering • Time Reversal and CP-Violation • Electric Dipole Moments • R and D Coefficients in b-Decay • CPT Invariance

  29. P C T matter anti-matter time   time mirror image from H.W. Wilschut The World according to Escher identical to start start anti-particle particle e+ e-

  30. Discrete Symmetries • Parity • Parity Nonconservation in Atoms • Nuclear Anapole Moments • Parity Violation in Electron-Scattering • Time Reversal and CP-Violation • Electric Dipole Moments • R and D Coefficients in b-Decay • CPT Invariance

  31. Permanent Electric Dipole Moments Violate Discrete Fundmental Symmetries EDM violates: • Parity • Timereversal • CP- conservation (if CPT conservation assumed) Standardd Model values are tiny, hence: An observedEDM would be Sign of New Physics beyond Standard Theory

  32. molecules: 1.610-27 • • 199Hg Radium potential Start TRIP de (SM) < 10-37 Some EDM Experiments compared New 2004 from muon g-2: d (muon) < 2.810-19 after E.Hinds

  33. EDMs – Where do they come from ?(are they just “painted“ to particles? Why different experiments? ) • electron intrinsic ? • quark intrinsic ? • muon second generation different ? • neutron/ proton from quark EDM ? property of strong interactions ? new interactions ? • deuteron basic nuclear forces CP violating? pion exchange ? • 6Li many body nuclear mechanism ? • heavy nuclei (e.g. Ra, Fr) enhancement by CP-odd nuclear forces, nuclear “shape“ • atoms can have large enhancement, sensitive to electron or nucleus EDMs • molecules large enhancement factors , sensitive to electron EDM • . . .

  34. Origin ofEDMs from C.P.. Liu

  35. Generic EDM Experiment Preparation of “pure“ J state Interaction with E - field Analysis of state hcontains all physics – “e cm” values by themselves not very helpful • mx= eħ/2mx Determination of Ensemble Spin average Polarization Spin Rotation Electric Dipole Moment: d = x c-1 J Spin precession : e dJ hJ Example:d=10-24 e cm, E=100 kV/cm, J=1/2 e 15.2 mHz

  36. TRImP Radium Permanent Electric Dipole Moment • Benefits of Radium • near degeneracy of 3P1 and 3D2 • ~40 000 enhancement • some nuclei strongly deformed •  nuclear enhancement • 50~1000 6 3D : electron spins parallel  electron EDM 1S : electron Spins anti-parallel  atomic / nuclear EDM • Ra also interesting for weak interaction effects • Anapole moment, weak charge • Dzuba el al., PRA, 062509 (2000)

  37. How does a ring edm experiment work ? • Exploit huge motional electric fields for relativistic particles in high magnetic fields • stop g-2 precession • observe spin rotation • Concept works • also for (certain) • Nuclei: d, 6Li, 213Fr, . . N+ N+ N+ One needs for a successful experiment: • polarized, fast beam • magnetic storage ring • polarimeter For muons exploit decay asymmetry • One could use -decay • In general: any sensitive polarimeter works N+

  38. Nucleus Spin J /N Reduced Anomaly a T 1/2 13957La 7/2 +2.789 -0.0305 12351Sb 7/2 2.550 -0.1215 13755Cs 7/2 +2.8413 0.0119 30y 22387Fr 3/2 +1.17 <0.02 22 min 63Li 1 +0.8220 -0.1779 21H 1 +0.8574 -0.1426 7532Ge 1/2 +0.510 +0.195 82.8 m Need Schiff moment calculations: Particularly in region of octupole deformed nuclei 15769Tm 1/2 +0.476 0.083 3.6 m Some Candidate Nuclei for EDM in Ring Searches

  39. Why a deuteron edm experiment “ “ Deuteron: Neutron: C.P. Liu and R.G.E Timmermans, nucl-th/0408060, PRC accepted (2004)

  40. Discrete Symmetries • Parity • Parity Nonconservation in Atoms • Nuclear Anapole Moments • Parity Violation in Electron-Scattering • Time Reversal and CP-Violation • Electric Dipole Moments • R and D Coefficients in b-Decay • CPT Invariance

  41. TimeReversalViolationin -decay: Correlation measurements • R andDtestboth Time Reversal Violation • D most potential • R scalar and tensor (EDM, a) • technique D measurements yield a, A, b, B

  42. Discrete Symmetries • Parity • Parity Nonconservation in Atoms • Nuclear Anapole Moments • Parity Violation in Electron-Scattering • Time Reversal and CP-Violation • Electric Dipole Moments • R and D Coefficients in b-Decay • CPT Invariance

  43. Lepton Magnetic Anomalies in CPT and Lorentz Non - Invariant Models | | - m m - 0 0 18 CPT tests K K = £ r 10 K m 0 K - - | g g | | a a | - + - + - - 3 12 e e e e = = × × £ × r 1.2 10 2 10 e g a avg avg ? ? Are they comparable - Which one is appropriate • often quoted: • K0- K0 mass difference (10-18) • e- - e+ g- factors (2* 10-12) • We need an interaction • with a finite strength! Use common ground, e.g. energies Þ generic CPT and Lorentz violating DIRAC equation 1 n μ μ μ μν μ μ ν ψ - - - - + + = (i γ D m a γ b γ γ H σ ic γ D id γ γ D ) 0 μ μ μ 5 μν μν μν 5 2 º ¶ - iD i qA m μ μ a , b break CPT a , b , c , d , H break Lorentz Invariance μ μ μ μ μν μν μν Leptons in External Magnetic Field - + l l l = - » - Δω ω ω 4b a a a 3 - + l l - | E E | Δω h spin up spin down a = » r l - 2 l m c E l spin up 57 Bluhm , Kostelecky, Russell, Phys. Rev. D ,3932 (1998) For g - 2 Experiments : - | a a | ω h = × c - + l l r l 2 a m c avg l Dehmelt, Mittleman,Van Dyck, Schwinberg, hep - ph/9906262 Þ - - 21 24 £ × £ × r 1.2 10 r 3.5 10 electron muon μ e : : CPT– Violation Lorentz Invariance Violation • What is best CPT test ? • New Ansatz (Kostelecky) • K0  10-18 GeV/c2 • n  10-30 GeV/c2 • p  10-24 GeV/c2 • e 10-27 GeV/c2 • m 10-23GeV/c2 • Future: • Anti hydrogen 10-22 GeV/c2

  44. CPT and Lorentz Invariance from Muon Experiments Muonium: new interaction below 2* 10-23 GeV Muon g-2: new interaction below 4* 10-22 GeV (CERN) 15 times better expected from BNL when analysis will be completed V.W. Hughes et al., Phys.Rev. Lett. 87, 111804 (2001)

  45. Properties of Known Basic Interactions • Electromagnetism and Fundamental Constants • QED, Lamb Shift • Muonium and Muon g-2 • Muonic Hydrogen and Proton Radius • Exotic Atoms • Does aQED vary with time? • QCD • Strong Interaction Shift • Scattering Lengths • Gravity • Hints of strings/Membranes?

  46. Muon g-2 “Proton Radius” Muonic Hydrogen Lamb Shift Strong Interaction Shift Pionic Hydrogen Properties of known Basic Interactions • Search for New Physics • What are the hardronic corrections? • e++e- hadrons • e++e- g + hadrons • New activities planned • statistics limited experiment • J-PARC, BNL, ... • Fundamental constants needed • Muonium

  47. Muon g-2 Newest Theory Offer: 2.5 s from Experiment Why a Muon EDM or g-2 Experiment ? • The muon magnetic anomaly amand the muon electric dipole moment dm are real and imaginary part of one single complex quantity. • dm = 3*10-22 *(amNP / 3*10-9) * tan fCP e cm a New Physics related muon magnetic anomaly would be related to an EDM through a CP violating phase fCP. • Particular models(L/R symmetry) predict nonlinear mass scaling for lepton EDMs. For muon 5*10-23 e cm possible.

  48. Properties of Known Basic Interactions • Electromagnetism and Fundamental Constants • QED, Lamb Shift • Muonium and Muon g-2 • Muonic Hydrogen and Proton Radius • Exotic Atoms • Does aQED vary with time? • QCD • Strong Interaction Shift • Scattering Lengths • Gravity • Hints of strings/Membranes?

  49. Standing Waves of Ultra Cold Neutrons in a gravitational field

More Related