480 likes | 612 Views
Simulating the Cosmic History of Baryons Discoveries Using Advanced Computing Michael L. Norman, Physics Dept., UC San Diego. validation. San Diego Supercomputer Center, UCSD. Keck Observatory, HI. surveys. Baryogensis : GUT phase transition t~10(-12) s speculative.
E N D
Simulating the Cosmic History of BaryonsDiscoveries Using Advanced ComputingMichael L. Norman, Physics Dept., UC San Diego validation San Diego Supercomputer Center, UCSD Keck Observatory, HI SciDAC 6-30-05 M. L. Norman
surveys Baryogensis: GUT phase transition t~10(-12) s speculative Nucleosynthesis: formation of light nuclei t~1-100 s precision era (BBNS) Recombination: matter & radiation decouple t~380,000 yr precision era (CMB) Cosmic History of Baryons gravitational instability phase transitions Structure Formation: 50 Myr < t < 14 Gyr synthesis era linear perturbation theory nonlinear simulations SciDAC 6-30-05 M. L. Norman
We are here SciDAC 6-30-05 M. L. Norman
Cosmological N-body Simulation A. Evrard and the Virgo Consortium SciDAC 6-30-05 M. L. Norman
Multiscale Challenge Multiscale Challenge SciDAC 6-30-05 M. L. Norman
Grand Challenges in Computational Hydrodynamic Cosmology • Formation and evolution of stellar systems on all scales and epochs • Chemical enrichment and reionization of intergalactic medium • Formation of massive black holes and nature of the quasar phenomenon • Cosmological constraints on nature of dark matter and dark energy SciDAC 6-30-05 M. L. Norman
Outline • Cosmology’s Standard Model • Universe in a Box • History of Baryons: Discoveries using Advanced Computing • Exciting Opportunities Ahead • Cosmological limits on dark matter mass • Measuring dark energy equation of state SciDAC 6-30-05 M. L. Norman
Cosmology’s Standard Model • Concordance model • H0=72+/-7 km/s/Mpc • expansion rate accelerating (q0<0) • flat universe (k=0) • dominated by dark matter and dark energy • baryons minor constituent Perlmutter (2003), Physics Today SciDAC 6-30-05 M. L. Norman
Evidence for an Accelerating Universe S. Perlmutter, Physics Today (2003) SciDAC 6-30-05 M. L. Norman
Cosmic Microwave BackgroundTemperature Fluctuations 380,000 yr ABB NASA WMAP DT/T ~ Dr/r ~ 10-4 SciDAC 6-30-05 M. L. Norman
CMB Angular Power Spectrum SciDAC 6-30-05 M. L. Norman
Mass-Energy Budget of the Universe (WMAP+SNe+XRC) WL SciDAC 6-30-05 M. L. Norman
The Universe is an IVP suitable for computation • Globally, the universe evolves according to the Friedmann equation cosmological constant Hubble parameter mass-energy density spacetime curvature scale factor a(t) SciDAC 6-30-05 M. L. Norman
The Universe is an IVP... • Locally*, its contents obey: • Newton’s laws of gravitational N-body dynamics for stars and cold dark matter • Euler or MHD equations for baryonic gas/plasma • Atomic and molecular processes important for radiative cooling of gas and condensation to form stars and galaxies • Radiative transfer equation for photons Numerical astrophysics on a cosmic scale (*scales << horizon scale ~ ct) SciDAC 6-30-05 M. L. Norman
baryonic universe radiative transfer radiation background self-shielding photo-ionization photo-heating photo-evaporation ionizing flux absorption infall galaxies IGM feedback (energy, metals) SF-recipe multi-species hydrodynamics N-body dynamics cosmic expansion self-gravity dark matter dynamics SciDAC 6-30-05 M. L. Norman
Cold Dark Matter • Dominant mass constituent: Wcdm~0.23 • Only interacts gravitationally with ordinary matter (baryons) • Candidates: WIMPs or axions • Collisionless dynamics governed by Vlasov-Poisson equation • Solved numerically using fast N-body methods SciDAC 6-30-05 M. L. Norman
Gridding the Universe • Triply-periodic boundary conditions • Transformation to comoving coordinates x=r/a(t) But what about initial conditions? a(t1) a(t2) a(t3) SciDAC 6-30-05 M. L. Norman
Matter Power Spectrum P(k) Concordance model http://www.hep.upenn.edu/~max SciDAC 6-30-05 M. L. Norman
Gravitational Instability: Origin of Cosmic Structure very small fluctuations r C A <r> x B gravity amplifies fluctuations C A r <r> x B SciDAC 6-30-05 M. L. Norman
Formation of the Cosmic Web: Sky Dome Rendering for DomeFest 2005 Michael Norman, Brian O’Shea, UCSD Donna Cox, Robert Patterson, Stuart Levy, UIUC Steve Cutchin, Amit Chourasia, SDSC
Technical Details • Simulation (Enzo) • Dark matter, gravity, multispecies gas dynamics, photo-ionization and, radiative cooling • 1 billion cells, 1 billion particles • 512 cpu, NCSA TeraGrid cluster • Data • 512x512x512 arrays of density • 2000 timesteps • 1 Terabyte of data • Volume rendering • SDSC IBM DataStar SciDAC 6-30-05 M. L. Norman
Structured Adaptive Mesh Refinement (Berger and Colella 1989) SciDAC 6-30-05 M. L. Norman
Cosmological Adaptive Mesh Refinement(Bryan & Norman 1997) • Spatial dynamic range unlimited in principle • Today: • L/D = 104 in statistical volumes • L/D =1010 single objects of interest • Petascale: • L/D =106 in statistical volumes SciDAC 6-30-05 M. L. Norman
http://cosmos.ucsd.edu/enzo SciDAC 6-30-05 M. L. Norman
Enzo Implementation Details • Multi-scale in space and time • Arbitrary # levels of refinement • Arbitrary # grids per level • Portable, MPI-parallel, C++/C/F77 hybrid • Nonlocal dynamic load balancing • Ported to IA64, SGI Altix, IBM SP, BG/L, your mother’s Linux cluster, ….. SciDAC 6-30-05 M. L. Norman
Galaxy Formation and Large Scale Structure • Technical details • 2563 base grid • >32,000 grid patches @ 8 levels of refinement • 110,000 cpu-hrs on 128 cpu Origin2000 • 0.5 TB of data • Run at NCSA in 1999 Science credit: M. Norman, G. Bryan, B. O’Shea Image credit: D. Cox et al.
Computational Discoveriesusing Advanced Computing First baryonic condensations SciDAC 6-30-05 M. L. Norman
“Bottom-Up” Galaxy Formation • large galaxies form from mergers of smaller galaxies • where does this begin? • What are the first objects to form? Lacey & Cole (1993) SciDAC 6-30-05 M. L. Norman
First objects: a well-posed problem • Initial conditions specified: Wi, P(k) • Macroscopic dynamics understood • Microphysics of primordial gas known • Have 3D solution-adaptive algorithms • Have adequate computer power February 2003 SciDAC 6-30-05 M. L. Norman
Formation of First StarsAdaptive Mesh Refinement SimulationAbel, Bryan & Norman (2001) 1 x 10 x 100 x 1000 x Cosmic scales 104 x 105 x 107 x 106 x Solar system scales SciDAC 6-30-05 M. L. Norman
Birth and Death of the First Star in the Universe Science credit: T. Abel, G. Bryan, M. Norman Movie credit: R. Kaehler & T. Abel SciDAC 6-30-05 M. L. Norman
Impact of the first stars • the first stars in the universe began forming around 50 million years after the big bang • they were exceptionally massive and bright, bringing an earlier end to the cosmic “dark ages” than previously thought • when they exploded as supernovae they seeded the universe with heavy elements essential for planets and life • they kick-started the cosmogonic sequence which eventually formed galaxies, clusters and superclusters SciDAC 6-30-05 M. L. Norman
Computational Discoveriesusing Advanced Computing structure of intergalactic medium SciDAC 6-30-05 M. L. Norman
The Intergalactic Medium Source: M. Murphy SciDAC 6-30-05 M. L. Norman
Structure of the IGM quasar N=10243 L=54 Mpc/h Simulated HI absorption spectrum Earth Baryon Overdensity, z=3 SciDAC 6-30-05 M. L. Norman
Matter Power Spectrum P(k) LCDM http://www.hep.upenn.edu/~max SciDAC 6-30-05 M. L. Norman
Computational Discoveriesusing Advanced Computing whereabouts of missing baryons SciDAC 6-30-05 M. L. Norman
Missing Baryons at z=0 • Galaxies in local universe account for only 10% of baryons we know exist due to three independent measurements, which all agree to 2s • Big bang nucleosynthesis • CMB anisotropies • IGM absorption at high redshift • Where are the baryons now? SciDAC 6-30-05 M. L. Norman
Whereabouts of the missing baryons: Warm-Hot intergalactic gas warm-hot gas “galaxies” Cen & Ostriker (1998) N=5123 SciDAC 6-30-05 M. L. Norman
Exciting Opportunities Ahead(require Terascale and beyond) • Predicting properties of first galaxies • Understanding quasar-galaxy connection • Self-consistent simulation of the reionization era • Cosmological limits on dark matter mass • Measuring the dark energy equation of state SciDAC 6-30-05 M. L. Norman
Effect of DM particle mass on first objects: critical threshold 25 keV 10 keV O’Shea & Norman (2005) SciDAC 6-30-05 M. L. Norman
Measuring Dark Energy EOS • Principal goal of NASA/DOE JDEM mission • Approach: precision measurements of expansion history of the universe using Type Ia SN standardizable candles • Complimentary approach: redshift distribution of galaxy clusters SciDAC 6-30-05 M. L. Norman
Evrard et al. Single, 10243 P3M L/D=104 Dark matter only Our plan Multiple, 5123 AMR Optimal tiling of lightcone L/D=105 Dark matter + gas 0 -1 -2 -3 -4 -5 Lightcone Simulation(A. Evrard et al. 2003) ct (Gyr) SciDAC 6-30-05 M. L. Norman
Cosmic Simulator • A software facility for physical cosmology • A new collaboration between LLNL and UCSD • Scientific data management focus • Simulations: LLNL Thunder, BG/L • Data management: SDSC SRB • Public archive @ UCSD • Science driver: • LSST (Large Synoptic Survey Telescope) SciDAC 6-30-05 M. L. Norman