290 likes | 303 Views
Explore the philosophy and practical applications of Value-at-Risk (VAR) in decision-making and risk management. Learn from historical cases and key theories on risk, investment, and market behavior.
E N D
Multiple Criteria Philosophy and Value-at-Risk • David L. Olson • University of Nebraska • Desheng Wu • University of Toronto; University of Reykjavik MCDM2011
Focus • The philosophy part • PARETO OPTIMALITY • The enterprise risk management part • VAR • Treatment of investment risk • Problems • Models and assumptions • If you have enough criteria, practically all choices will be Pareto Optimal MCDM2011
Economic Philosophy of Risk • Thűnen [1826] • Profit is in part payment for assuming risk • Hawley [1907] • Risk-taking essential for an entrepreneur • Knight [1921] • Uncertainty non-quantitative • Risk: measurable uncertainty (subjective) • Profit is due to assuming risk (objective) MCDM2011
Contemporary Economics • Harry Markowitz [1952] • RISK IS VARIANCE • Efficient frontier – tradeoff of risk, return • Correlations – diversify • William Sharpe [1970] • Capital asset pricing model • Evaluate investments in terms of risk & return relative to the market as a whole • The riskier a stock, the greater profit potential • Thus RISK IS OPPORTUNITY • Eugene Fama[1965] • Efficient market theory • market price incorporates perfect information • Random walks in price around equilibrium value MCDM2011
Empirical • BUBBLES • Dutch tulip mania – early 17th Century • South Sea Company – 1711-1720 • Mississippi Company – 1719-1720 • Isaac Newton got burned: “I can calculate the motion of heavenly bodies but not the madness of people.” MCDM2011
Long Term Capital Management • Black-Scholes – model pricing derivatives • LTCM formed to take advantage • Heavy cost to participate • Did fabulously well • 1998 invested in Russian banks • Russian banks collapsed • LTCM bailed out by US Fed • LTCM too big to allow to collapse MCDM2011
Real Estate • Considered safest investment around • 1981 deregulation • In some places (California) consistent high rates of price inflation • Banks eager to invest in mortgages – created tranches of mortgage portfolios • 2008 – interest rates fell • Soon many risky mortgages cost more than houses worth • SUBPRIME MORTGAGE COLLAPSE • Risk avoidance system so interconnected that most banks at risk MCDM2011
“All the Devils Are Here”Nocera & McLean, 2010 • Circa 2005 – Financial industry urge to optimize • J.P. Morgan, other banks hired mathematicians, physicists, rocket scientists, to create complex risk models & products • Credit default swap – derivatives based on Value at Risk models • One measure of market risk from one day to the next – MAX EXPOSURE at given probability MCDM2011
Credit Default SwapNocera & McLean, 2010 • 1994 J.P. Morgan • Exxon Valdez oil spill • Exxon faced possible $5 billion fine • Drew on $4.8 billion line of credit from J.P. Morgan • Morgan couldn’t alienate Exxon • But loan would tied up lots of money • Morgan got European Bank for Reconstruction & Development to swap default risk for the loan for a fee MCDM2011
Circa 2005Nocera & McLean, 2010 • Banks want more profit • Create products to sell to investors • Mortgage granting agencies want fees • Don’t worry about risk – sell to Wall Street • Wall Street packages different mortgages into CDOs (collateralized debt obligations) • Prior to 2007 – CDOs consisted of corporate debt • 2007 – shifted to mortgage debt • Blending mortgages of different grades, locations, intended to diversity • View that high return required high risk • Needed AAA rating to attract investors MCDM2011
RatingsNocera & McLean, 2010 • Prior to 1970s, ratings agencies gained revenue from subscribers • Subscription optional • 1970s – switched to charging issuers directly • Investors wouldn’t buy unrated bonds • Issuers required to get ratings • CONFLICT OF INTEREST • SEC decreed Moody’s, S&P, Fitch were qualified to rate bonds MCDM2011
Ratings FailuresNocera & McLean, 2010 • 1929 -78% of AA or AAA municipal bonds defaulted • 1970s Penn Central RR • Near default of New York City • Bankruptcy of Orange County • Asian, Russian meltdowns • 1990s – Long-Term Capital Management MCDM2011
Mortgage AbusesNocera & McLean, 2010 • Loan officers often convinced applicants to lie • Part-time housekeeper earning ≈$1,300/mo • fronted for sister, got loan • unable to find steady work so returned to Poland • Dairy milker earning ≈$1,000/mo purported to be foreman earning $10,500/mo • Didn’t speak English • Bought house for son • Told by lender that he was lending his credit to his son • Janitor earning $3,900/mo • Claimed to be account executive (for nonexistent firm) • Closed loan on $600,000 house • Never made $30,000 down payment Originator claimed MCDM2011
Correlated Investments • EMT assumes independence across investments • DIVERSIFY – invest in countercyclical products • LMX spiral blamed on assuming independence of risk probabilities • LTCM blamed on misunderstanding of investment independence MCDM2011
PRACTICAL ALTERNATIVES • Warren Buffet • George Soros MCDM2011
Warren Buffett • Conservative investment view • There is an underlying worth (value) to each firm • Stock market prices vary from that worth • BUY UNDERPRICED FIRMS • HOLD • At least until your confidence is shaken • ONLY INVEST IN THINGS YOU UNDERSTAND • NOT INCOMPATIBLE WITH EMT MCDM2011
George Soros • Humans fallable • Bubbles examples reflexivity • Human decisions affect data they analyze for future decisions • Human nature to join the band-wagon • Causes bubble • Some shock brings down prices • JUMP ON INITIAL BUBBLE-FORMING INVESTMENT OPPORTUNITIES • Help the bubble along • WHEN NEAR BURSTING, BAIL OUT MCDM2011
12 Investment Opportunitiesdaily data – 6/14/2000 to 7/6/2009Change each day from priorMean, Standard Deviation, Avoid Chinese, Avoid US (except Berkshire) • World Index • USA1 • USA2 • Chinese index • Eurostoxx • Japanese index • 20 Nondominated portfolios • Hong Kong index • Treasury Yield Bond • DJSI World Index • Royce Focus Fund • Berkshire Hathaway • Equal MCDM2011
Idea • Identify Pareto optimal set • 2 criteria • Maximize mean (return) • Minimize standard deviation (risk) • 3 criteria • Avoid Chinese (China, HongKong) • 4 criteria • Avoid US (USA1, USA2, Treasury, DowJ, Royce Focus) MCDM2011
Data – 2 Criteria MCDM2011
Data Additional Criteria MCDM2011
POINT • Investments will be portfolios • Mixtures of investments • The data still demonstrates the point • IF YOU INCLUDE ENOUGH CRITERIA, HARD TO FIND DOMINATED SOLUTIONS • There must be a reason the market cleared • Keeney MAUT models • Typically 80 criteria • Government choices • Whatever is first choice, hearings will stifle MCDM2011
Better ModelsCooper [2008] • Efficient market hypothesis • Inaccurate description of real markets • disregards bubbles • FAT TAILS • Hyman Minsky [2008] • Financial instability hypothesis • Markets can generate waves of credit expansion, asset inflation, reverse • Positive feedback leads to wild swings • Need central banking control • Mandelbrot & Hudson [2004] • Fractal models • Better description of real market swings MCDM2011
Models are Flawed • Soros got rich taking advantage of flaws in other peoples’ models • Buffett is a contrarian investor • In that he buys what he views as underpriced in underlying long-run value (assets>price); • holds until convinced otherwise • Avoids buying what he doesn’t understand (IT) MCDM2011
Nassim Taleb • Black Swans • Human fallability in cognitive understanding • Investors considered successful in bubble-forming period are headed for disaster • BLOW-Ups • There is no profit in joining the band-wagon • Seek investments where everyone else is wrong • Seek High-payoff on these long shots • Lottery-investment approach • Except the odds in your favor MCDM2011
Fat Tails • Investors tend to assume normal distribution • Real investment data bell shaped • Normal distribution well-developed, widely understood • TALEB [2007] • BLACK SWANS • Humans tend to assume if they haven’t seen it, it’s impossible • BUT REAL INVESTMENT DATA OFF AT EXTREMES • Rare events have higher probability of occurring than normal distribution would imply • Power-Log distribution • Student-t • Logistic • Normal MCDM2011
Human Cognitive Psychology • Kahneman & Tversky [many – c. 1980] • Human decision making fraught with biases • Often lead to irrational choices • FRAMING – biased by recent observations • Risk-averse if winning • Risk-seeking if losing • RARE EVENTS – we overestimate probability of rare events • We fear the next asteroid • Airline security processing MCDM2011
Animal Spirits • Akerlof & Shiller [2009] • Standard economic theory makes too many assumptions • Decision makers consider all available options • Evaluate outcomes of each option • Advantages, probabilities • Optimize expected results • Akerlof & Shiller propose • Consideration of objectives in addition to profit • Altruism - fairness MCDM2011
APPROACHES TO THE PROBLEM • MAKE THE MODELS BETTER • The economic theoretical way • But human systems too complex to completely capture • Black-Scholes a good example • PRACTICAL ALTERNATIVES • Buffett • Soros MCDM2011