730 likes | 881 Views
OCNC---2004 St atistical Approach to Neural Learning and Population Coding ---- Introduction to Mathematical Neuroscience Shun-ichi Amari Laboratory for Mathematical Neuroscience RIKEN Brain Science Institute.
E N D
OCNC---2004Statistical Approach toNeural Learning and Population Coding---- Introduction to Mathematical NeuroscienceShun-ichi AmariLaboratory for Mathematical Neuroscience RIKEN Brain Science Institute
BRAINbiological science information science Computational neuroscience Neurocomputing Mathematical Neuroscience
I. Mathematical Neuroscience • ----classical theories II. Population Coding ---- modern topics III. Bayesian Inference ---- its merits and critique
1. Mathematical Neurons • Dynamics of Neuro-Ensembles • Dynamics of Neuro-Fields • Learning and Self-Organization • 5. Self-Organization of Neuro-Fields
I Mathematical Neurons Simple model
spiking neuron integration-and-fire neuron rate coding
synchrony : spatial correlations firing probability
rate coding ensemble coding
macroscopic law Ensemble of networks macroscopic state
stability = =
Associative memory m pairs
Randomly generated Random matrix
II Dynamics of Neuro-Ensembles spiking neurons : stochastic point process synchronization Ensemble coding : macrodynamics
S Simple examples Bistable S Multi-stable
oscillation Amari (1971); Wilson-Cowan (1972)
competitive model (winner-take-all) ・・・ (winner-share-some)
multistable associative memory (Anderson, Amari, Nakano, Kohonen Hopfield) decision process (Hopfield) travelling salesman problem
General Theory Transient Attractors • stable state • limit cycle • chaos (strange attractors)
Chaotic behavior random stable states chaos Chaotic memory search
random attractor Associative memory (content-addressable memory) dynamics
Theory 1 =
Theory 2 …..
Macroscopic state Amari & Maginu, 1998
Dynamics of recalling processes Direction cosine Correct pattern 1 0 time simulations
Direction cosine 1 0 theory time
simulation Threshold of recalling Spurious memory
Dynamics of temporal sequence (Amari, 1972) non-monotonic output function Morita model
Nonmonotonic model non-monotonic
memory capacity : sparse exact : no spurious memories chaotic oscillation inhibitory connection
Biology hippocumpus, Rolls et al Tonegawa et al CA3 Chaotic associative memory Aihara et al Chaotic search
Associative Memory Dynamics of a Chaotic Neural Networks Each neuron model shows chaotic dynamics Synaptic weights are determined by an auto-correlation matrix of the stored patterns Stored Patterns t=0 t=1 t=2 t=3 t=4
t=5 t=8 t=9 t=6 t=7 t=10 t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=18 t=19
t=20 t=21 t=22 t=23 t=24 t=25 t=26 t=28 t=29 t=27 t
III Field Dynamics of Neural Excitation timing local excitations: travelling wave: oscillatory: memory decision Amari, Biol. Cybern,1978
unstable stable
excitatory and inhibitory fields traveling wave oscillation
Neural Learning (Hebbian) classic theory ……… Information source I
Hebbian correlation generalized inverse principal component analyzer Perceptron Amari, Biol,Cybern,1978 ….
……. …. Neural learning (STDP) Spike-time dependent plasticity emergence of synchrony LTP LTD