1 / 20

Recognizing Human Body Motion

Recognizing Human Body Motion. 2002. 10. 31 MAI LAB Kong Jae Hyun. Toward the automatic analysis of complex human body motion. J. Rittscher * , A.Blake ** , S.J. Roberts *** *GE Global Research, I Research Circle, Niskayna, NY 12308, USA

paxton
Download Presentation

Recognizing Human Body Motion

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Recognizing Human Body Motion 2002. 10. 31 MAI LAB Kong Jae Hyun MAI-LAB Seminar

  2. Toward the automatic analysis of complex human body motion J. Rittscher*, A.Blake**, S.J. Roberts*** *GE Global Research, I Research Circle, Niskayna, NY 12308, USA **Microsoft Research, 7 JJ Thomson Avenue, Cambridge CB3 0FB, UK **University of Oxford, Park Road, Oxford OXI PJ3, UK Image and Vision Computing 20 (2002) 905-916 MAI-LAB Seminar

  3. Contents • Introduction • Methodology • Experiments and Results • Conclusion MAI-LAB Seminar

  4. Introduction(1/3) • The interpretation of human action plays a vital role for intelligent environments and surveillance application • Surveillance application has to be instantaneous • classifying the type of motion without having to estimate the pose • Use a low dimensional representation MAI-LAB Seminar

  5. Introduction(2/3) Simultaneously perceive and classify Classify directly from the set of spatio-temporal feature Use the statistical models Epipolar plane image analysis Autoregressive Process (ARP) Condensation filtering Treat the vector of the skew Factor(distribution of velocity) as a feature vector MAI-LAB Seminar

  6. Introduction(3/3) HMMs Complex Movement Sequences Dynamic Programming Simple Dynamical Categories Linear Dynamical Models Q(t+1)=A1Q(t) Q(t+1)=A2Q(t) Kalman-Filter Q(1), Q(2), Q(3), Q(4),… Mixture of Gaussians Coherence Blob Hypotheses EM clustering XYT Gradients HSV, Texture Input Image Sequence ( Source : C. Bregler, Learning and Recognition Human Dynamics in Video Sequence, Proceeding of 11th IEEE computer vision and pattern recognition, 1997) MAI-LAB Seminar

  7. Methodology(1/9) Simultaneous perception and classification 기본적인 아이디어 • 시간 t에서의 image의 spline contour로 부터 continuous state vector x를 정의 • Motion의 클래스를 discrete vector y로 정의 • Mixed state Xt=(xt,yt)T로 정의 • 새로운 상태 Zt={z0,...,zt} 의 입력이 주어지면 • p(Xt|Zt)의 확률 분포를 구해내고 classification MAI-LAB Seminar

  8. Methodology(2/9) Simultaneous perception and classification Autoregressive Process • A linear-Gaussian Markov model of order K • Each class y has a set (Ay,By,dy) • P(yt=y'|yt-1=y)=M(y,y') • p(zt|xt) is taken to be Gaussian in experiment MAI-LAB Seminar

  9. Methodology(3/9) Simultaneous perception and classification The mixed-state Condensation algorithm 1. Select a sample st‘(n) = (xt‘(n), i) 2. Predict by sampling form p(Xt | Xt-1 = st‘(n) ) to choose st(n) =(xt(n) , yt(n)) (a) Sample transition properties p(yt(n)=j | Xt-1 = st‘(n) )=Tij(xt‘(n)) (b) Sample sub-process density p(xt(n)|Xt-1 = st‘(n) , yt(n)=j )=pij(xt|xt‘(n)) 3. Measure and weight the new position in terms of the image data Zt wt(n) =p(Zt | Xt = st(n) ) ( Source : M. Isard, A. Blake, A mixed-state condensation tracker with automatic model-switching, Proceeding of Sixth ICCV, 1998) MAI-LAB Seminar

  10. Methodology(4/9) Simultaneous perception and classification Motion models for classification • The motion model need to be finely tuned • Transition matrix M 은 motion을 인식하는 prior로 사용됨 • 따라서 Transition matrix M과 p(X)를 여러 가지 실험을 통해 잘 조절 해야 한다. MAI-LAB Seminar

  11. Methodology(5/9) Simultaneous perception and classification Partial importance sampling • 하나의 동작에서 다음 동작으로 넘어가는 경우에 선행 동작의 각 particle을 모두 평가하는 것은 cost의 낭비 • e.g. 한 동작이 2초 동안 일어나고 video field rate가 50Hz인 경우 particle의 수는 100가지 이지만 실제로 동작이 바뀌는 부분의 하나의 particle만 있으면 된다. • partial importance sampling 필요 • Importance sampling functio g는 다음과 같이 나타남 • gt(Xt|Xt-1)=p(xt|xt-1,yt)P(yt|yy-1) • ( importance transition matrix G, P(yt|yy-1)=G(yt-1,yt) ) MAI-LAB Seminar

  12. Methodology(6/9) Classifying motions directly from spatio-temporal features Epipolar plane image analysis • motion의 type을 분류하는데 epipolar slice를 이용 • epipolar slice의 pattern으로부터 특성을 찾아내고 model을 디자인 • running, walking, skipping과 같은 경우 그림과 같은 braided pattern 을 보임 MAI-LAB Seminar

  13. green line (v=33) blue line (v=92) red line (v=189) Methodology(7/9) Classifying motions directly from spatio-temporal features Epipolar plane image analysis Source : http://graphics.lcs.mit.edu MAI-LAB Seminar

  14. Methodology(8/9) Classifying motions directly from spatio-temporal features Epipolar plane image analysis • Epipolar slice에서 걷는 속도의 measure인 를 구한다. • 확률 분포 를 구한다. • 분포의 skewness 을 구한다. • 각 y에 따른 의 집합 • 을 바탕으로 classification 실시 MAI-LAB Seminar

  15. Methodology(9/9) Classifying motions directly from spatio-temporal features Epipolar plane image analysis MAI-LAB Seminar

  16. Experiments and Results(1/4) Simultaneous perception and classification MAI-LAB Seminar

  17. Experiments and Results(2/4) Classifying motions directly from spatio-temporal features Running Skipping Walking Linear fisher discriminant 이용 MAI-LAB Seminar

  18. Experiments and Results(3/4) Classifying motions directly from spatio-temporal features Jumping Half star Star-Jump MAI-LAB Seminar

  19. Experiments and Results(4/4) Classifying motions directly from spatio-temporal features Running Walking turningthrowing Misclassification rate : 10 % MAI-LAB Seminar

  20. Conclusion • 실시간으로 motion을 분류할 수 있는 도구가 필요 • 이전의 연구들은 계산 시간이 너무 오래 걸리 거나 단순한 동작만 인식하기 때문에 좋지 않음 • 이 연구는 적은 계산으로 좋은 분류 결과를 보임 • view point에 대해 독립적인 분류 방법이 필요 MAI-LAB Seminar

More Related