190 likes | 207 Views
CPCTC. B. C. Given: E is the midpoint of BD <B = <D Prove: AB = CD. E. <1. <2. A. D. Statement Reason E is the midpoint of BD given <B = <D given. B. C. Given: E is the midpoint of BD <B = <D Prove: AB = CD. E. <1. <2. A. D. Statement Reason
E N D
B C Given: E is the midpoint of BD <B = <D Prove: AB = CD E <1 <2 A D Statement Reason E is the midpoint of BD given <B = <D given
B C Given: E is the midpoint of BD <B = <D Prove: AB = CD E <1 <2 A D Statement Reason E is the midpoint of BD given <B = <D given BE = DE definition of a midpoint <1 = <2 vertical angle theorem ∆ABC = ∆CDE ASA AB = CD CPCTC
B C Given: E is the midpoint of BD <A = <C Prove: <B = <D E <1 <2 A D Statement Reason E is the midpoint of BD given <A = <C given
B C Given: E is the midpoint of BD <A = <C Prove: <B = <D E <1 <2 A D Statement Reason E is the midpoint of BD given <A = <C given BE = DE definition of a midpoint <1 = <2 vertical angle theorem ∆ABC = ∆CDE AAS <B = <D CPCTC
B C Given: AB // DC AB = DC Prove: BE = DE (using ASA) E <2 <5 <3 <4 <1 <6 A D Statement Reason AB // DC given AB = DC given
B C Given: AB // DC AB = DC Prove: BE = DE (using ASA) E <2 <5 <3 <4 <1 <6 A D Statement Reason AB // DC given AB = DC given <2 = <6 alternate interior angle theorem <1 = <5 alternate interior angle theorem ∆ABC = ∆CDE ASA BE = DE CPCTC
B C Given: AB // DC AB = DC Prove: AE = CE (using AAS) E <2 <5 <3 <4 <1 <6 A D Statement Reason AB // DC given AB = DC given
B C Given: AB // DC AB = DC Prove: AE = CE (using AAS) E <2 <5 <3 <4 <1 <6 A D Statement Reason AB // DC given AB = DC given BE = DE definition of a midpoint <1 = <5 alternate interior angle theorem <3 = <4 vertical angle theorem ∆ABC = ∆CDE AAS AE = CE CPCTC
B Given: AB = AD BC = DC Prove: <1 = <2 <1 <3 A C <2 <4 D Statement Reason AB = AD given BC = DC given
B Given: AB = AD BC = DC Prove: <1 = <2 <1 <3 A C <2 <4 D Statement Reason AB = AD given BC = DC given AC = AC reflexive property ∆ABC = ∆ADC SSS <1 = <2 CPCTC
B Given: AC bisects <A AC bisects <C Prove: <B = <D <1 <3 A C <2 <4 D Statement Reason AC bisects <A given AC bisects <C given
B Given: AC bisects <A AC bisects <C Prove: <B = <D <1 <3 A C <2 <4 D Statement Reason AC bisects <A given AC bisects <C given <1 = <2 definition of an angle bisector <3 = <4 definition of an angle bisector AC = AC reflexive property ∆ABC = ∆ADC ASA <B = <D CPCTC
B Given: D is the midpoint of AC AB = CB Prove: <1 = <2 <1 <2 <3 <4 A C D Statement Reason D is the midpoint of AC given AB = CB given
B Given: D is the midpoint of AC AB = CB Prove: <1 = <2 <1 <2 <3 <4 A C D Statement Reason D is the midpoint of AC given AB = CB given AD = CD definition of a midpoint BD = BD reflexive property ∆ABD = ∆CBD SSS <1 = <2 CPCTC
B Given: <4 = 90° D is the midpoint of AC Prove: <A = <C <1 <2 <3 <4 A C D Statement Reason <4 = 90° given D is the midpoint of AC given
B Given: <4 = 90° D is the midpoint of AC Prove: <A = <C <1 <2 <3 <4 A C D Statement Reason <4 = 90° given D is the midpoint of AC given <3 + <4 = 180 linear pair postulate <3 + 90 = 180 substitution <3 = 90 subtraction <3 = <4 substitution AD = CD definition of a midpoint BD = BD reflexive property ∆ABD = ∆CBD SAS <A = <C CPCTC
B Given: AC bisects <A AC bisects <C Prove: <B = <D (w/o using ∆ congruence) <1 <3 A C <2 <4 D Statement Reason AC bisects <A given AC bisects <C given
B Given: AC bisects <A AC bisects <C Prove: <B = <D (w/o using ∆ congruence) <1 <3 A C <2 <4 D Statement Reason AC bisects <A given AC bisects <C given <1 = <2 definition of angle bisector <3 = <4 definition of angle bisector <1 + <3 + <B= 180 triangle sum theorem <2 + <4 + <D = 180 triangle sum theorem <1 + <3 + <B = <2 + <4 + <D substitution <2 + <4 + <B = <2 + <4 + <D substitution <B = <D subtraction property