730 likes | 903 Views
Supply Chain Management (SCM) Forecasting 2. Dr. Husam Arman. Today’s Outline. Seasonal forecasting Choosing between times series methods Calculating errors; Cumulative forecast error (CFE) Mean absolute deviation (MAD) Mean squared error (MSE) Mean absolute percent error (MAPE)
E N D
Supply Chain Management (SCM) Forecasting 2 Dr. Husam Arman
Today’s Outline • Seasonal forecasting • Choosing between times series methods • Calculating errors; • Cumulative forecast error (CFE) • Mean absolute deviation (MAD) • Mean squared error (MSE) • Mean absolute percent error (MAPE) • Quantitative methods – • Causal methods - Linear regression
Quarter Year 1 Year 2 Year 3 Year 4 1 45 70 100 100 2 335 370 585 725 3 520 590 830 1160 4 100 170 285 215 Total 1000 1200 1800 2200 Average 250 300 450 550 Time-Series MethodsSeasonal Influences Example 12.6
Quarter Year 1 Year 2 Year 3 Year 4 1 45 70 100 100 2 335 370 585 725 3 520 590 830 1160 4 100 170 285 215 Total 1000 1200 1800 2200 Average 250 300 450 550 Actual Demand Average Demand Seasonal Index = Time-Series MethodsSeasonal Influences Example 12.6
Quarter Year 1 Year 2 Year 3 Year 4 1 45 70 100 100 2 335 370 585 725 3 520 590 830 1160 4 100 170 285 215 Total 1000 1200 1800 2200 Average 250 300 450 550 45 250 Seasonal Index = = 0.18 Time-Series MethodsSeasonal Influences Example 12.6
Quarter Year 1 Year 2 Year 3 Year 4 1 45/250 = 0.18 70 100 100 2 335 370 585 725 3 520 590 830 1160 4 100 170 285 215 Total 1000 1200 1800 2200 Average 250 300 450 550 45 250 Seasonal Index = = 0.18 Time-Series MethodsSeasonal Influences Example 12.6
Quarter Year 1 Year 2 Year 3 Year 4 1 45/250 = 0.18 70/300 = 0.23 100/450 = 0.22 100/550 = 0.18 2 335/250 = 1.34 370/300 = 1.23 585/450 = 1.30 725/550 = 1.32 3 520/250 = 2.08 590/300 = 1.97 830/450 = 1.84 1160/550 = 2.11 4 100/250 = 0.40 170/300 = 0.57 285/450 = 0.63 215/550 = 0.39 Time-Series MethodsSeasonal Influences Example 12.6
Quarter Year 1 Year 2 Year 3 Year 4 1 45/250 = 0.18 70/300 = 0.23 100/450 = 0.22 100/550 = 0.18 2 335/250 = 1.34 370/300 = 1.23 585/450 = 1.30 725/550 = 1.32 3 520/250 = 2.08 590/300 = 1.97 830/450 = 1.84 1160/550 = 2.11 4 100/250 = 0.40 170/300 = 0.57 285/450 = 0.63 215/550 = 0.39 Quarter Average Seasonal Index 1 (0.18 + 0.23 + 0.22 + 0.18)/4 = 0.20 2 3 4 Time-Series MethodsSeasonal Influences Example 12.6
Quarter Year 1 Year 2 Year 3 Year 4 1 45/250 = 0.18 70/300 = 0.23 100/450 = 0.22 100/550 = 0.18 2 335/250 = 1.34 370/300 = 1.23 585/450 = 1.30 725/550 = 1.32 3 520/250 = 2.08 590/300 = 1.97 830/450 = 1.84 1160/550 = 2.11 4 100/250 = 0.40 170/300 = 0.57 285/450 = 0.63 215/550 = 0.39 Quarter Average Seasonal Index 1 (0.18 + 0.23 + 0.22 + 0.18)/4 = 0.20 2 (1.34 + 1.23 + 1.30 + 1.32)/4 = 1.30 3 (2.08 + 1.97 + 1.84 + 2.11)/4 = 2.00 4 (0.40 + 0.57 + 0.63 + 0.39)/4 = 0.50 Time-Series MethodsSeasonal Influences Example 12.6
Quarter Year 1 Year 2 Year 3 Year 4 1 45/250 = 0.18 70/300 = 0.23 100/450 = 0.22 100/550 = 0.18 2 335/250 = 1.34 370/300 = 1.23 585/450 = 1.30 725/550 = 1.32 3 520/250 = 2.08 590/300 = 1.97 830/450 = 1.84 1160/550 = 2.11 4 100/250 = 0.40 170/300 = 0.57 285/450 = 0.63 215/550 = 0.39 Projected Annual Demand = 2600 Average Quarterly Demand = 2600/4 = 650 Quarter Average Seasonal Index Forecast 1 (0.18 + 0.23 + 0.22 + 0.18)/4 = 0.20 2 (1.34 + 1.23 + 1.30 + 1.32)/4 = 1.30 3 (2.08 + 1.97 + 1.84 + 2.11)/4 = 2.00 4 (0.40 + 0.57 + 0.63 + 0.39)/4 = 0.50 Time-Series MethodsSeasonal Influences Example 12.6
Quarter Year 1 Year 2 Year 3 Year 4 1 45/250 = 0.18 70/300 = 0.23 100/450 = 0.22 100/550 = 0.18 2 335/250 = 1.34 370/300 = 1.23 585/450 = 1.30 725/550 = 1.32 3 520/250 = 2.08 590/300 = 1.97 830/450 = 1.84 1160/550 = 2.11 4 100/250 = 0.40 170/300 = 0.57 285/450 = 0.63 215/550 = 0.39 Projected Annual Demand = 2600 Average Quarterly Demand = 2600/4 = 650 Quarter Average Seasonal Index Forecast 1 (0.18 + 0.23 + 0.22 + 0.18)/4 = 0.20 650(0.20) = 130 2 (1.34 + 1.23 + 1.30 + 1.32)/4 = 1.30 3 (2.08 + 1.97 + 1.84 + 2.11)/4 = 2.00 4 (0.40 + 0.57 + 0.63 + 0.39)/4 = 0.50 Time-Series MethodsSeasonal Influences Example 12.6
Quarter Year 1 Year 2 Year 3 Year 4 1 45/250 = 0.18 70/300 = 0.23 100/450 = 0.22 100/550 = 0.18 2 335/250 = 1.34 370/300 = 1.23 585/450 = 1.30 725/550 = 1.32 3 520/250 = 2.08 590/300 = 1.97 830/450 = 1.84 1160/550 = 2.11 4 100/250 = 0.40 170/300 = 0.57 285/450 = 0.63 215/550 = 0.39 Quarter Average Seasonal Index Forecast 1 (0.18 + 0.23 + 0.22 + 0.18)/4 = 0.20 650(0.20) = 130 2 (1.34 + 1.23 + 1.30 + 1.32)/4 = 1.30 650(1.30) = 845 3 (2.08 + 1.97 + 1.84 + 2.11)/4 = 2.00 650(2.00) = 1300 4 (0.40 + 0.57 + 0.63 + 0.39)/4 = 0.50 650(0.50) = 325 Time-Series MethodsSeasonal Influences Example 12.6
Measures of Forecast Error Et = Dt – Ft Choosing a MethodForecast Error Example 12.7
Measures of Forecast Error Et = Dt – Ft CFE = Et = MSE = MAD = MAPE = (Et – E)2 n– 1 Et2 n [|Et | (100)]/Dt n |Et | n Choosing a MethodForecast Error Example 12.7
Absolute Error Absolute Percent Month, Demand, Forecast, Error, Squared, Error, Error, tDtFtEt Et2 |Et| (|Et|/Dt)(100) 1 200 225 -25 625 25 12.5% 2 240 220 20 400 20 8.3 3 300 285 15 225 15 5.0 4 270 290 –20 400 20 7.4 5 230 250 –20 400 20 8.7 6 260 240 20 400 20 7.7 7 210 250 –40 1600 40 19.0 8 275 240 35 1225 35 12.7 Total –15 5275 195 81.3% Choosing a MethodForecast Error Example 12.7
Measures of Error Absolute Error Absolute Percent Month, Demand, Forecast, Error, Squared, Error, Error, tDtFtEt Et2 |Et| (|Et|/Dt)(100) 1 200 225 –25 625 25 12.5% 2 240 220 20 400 20 8.3 3 300 285 15 225 15 5.0 4 270 290 –20 400 20 7.4 5 230 250 –20 400 20 8.7 6 260 240 20 400 20 7.7 7 210 250 –40 1600 40 19.0 8 275 240 35 1225 35 12.7 Total –15 5275 195 81.3% Choosing a MethodForecast Error Example 12.7
Measures of Error Absolute Error Absolute Percent Month, Demand, Forecast, Error, Squared, Error, Error, tDtFtEt Et2 |Et| (|Et|/Dt)(100) 1 200 225 –25 625 25 12.5% 2 240 220 20 400 20 8.3 3 300 285 15 225 15 5.0 4 270 290 –20 400 20 7.4 5 230 250 –20 400 20 8.7 6 260 240 20 400 20 7.7 7 210 250 –40 1600 40 19.0 8 275 240 35 1225 35 12.7 Total –15 5275 195 81.3% CFE = – 15 Choosing a MethodForecast Error Example 12.7
Measures of Error Absolute Error Absolute Percent Month, Demand, Forecast, Error, Squared, Error, Error, tDtFtEt Et2 |Et| (|Et|/Dt)(100) 1 200 225 –25 625 25 12.5% 2 240 220 20 400 20 8.3 3 300 285 15 225 15 5.0 4 270 290 –20 400 20 7.4 5 230 250 –20 400 20 8.7 6 260 240 20 400 20 7.7 7 210 250 –40 1600 40 19.0 8 275 240 35 1225 35 12.7 Total –15 5275 195 81.3% CFE = – 15 –15 8 E = = – 1.875 Choosing a MethodForecast Error Example 12.7
Measures of Error Absolute Error Absolute Percent Month, Demand, Forecast, Error, Squared, Error, Error, tDtFtEt Et2 |Et| (|Et|/Dt)(100) 1 200 225 –25 625 25 12.5% 2 240 220 20 400 20 8.3 3 300 285 15 225 15 5.0 4 270 290 –20 400 20 7.4 5 230 250 –20 400 20 8.7 6 260 240 20 400 20 7.7 7 210 250 –40 1600 40 19.0 8 275 240 35 1225 35 12.7 Total –15 5275 195 81.3% CFE = – 15 – 15 8 E = = – 1.875 5275 8 MSE = = 659.4 Choosing a MethodForecast Error Example 12.7
Measures of Error Absolute Error Absolute Percent Month, Demand, Forecast, Error, Squared, Error, Error, tDtFtEt Et2 |Et| (|Et|/Dt)(100) 1 200 225 –25 625 25 12.5% 2 240 220 20 400 20 8.3 3 300 285 15 225 15 5.0 4 270 290 –20 400 20 7.4 5 230 250 –20 400 20 8.7 6 260 240 20 400 20 7.7 7 210 250 –40 1600 40 19.0 8 275 240 35 1225 35 12.7 Total –15 5275 195 81.3% CFE = – 15 – 15 8 E = = – 1.875 5275 8 MSE = = 659.4 s = 27.4 Choosing a MethodForecast Error Example 12.7
Measures of Error Absolute Error Absolute Percent Month, Demand, Forecast, Error, Squared, Error, Error, tDtFtEt Et2 |Et| (|Et|/Dt)(100) 1 200 225 –25 625 25 12.5% 2 240 220 20 400 20 8.3 3 300 285 15 225 15 5.0 4 270 290 –20 400 20 7.4 5 230 250 –20 400 20 8.7 6 260 240 20 400 20 7.7 7 210 250 –40 1600 40 19.0 8 275 240 35 1225 35 12.7 Total –15 5275 195 81.3% CFE = – 15 – 15 8 E = = – 1.875 5275 8 MSE = = 659.4 195 8 s = 27.4 MAD = = 24.4 Choosing a MethodForecast Error Example 12.7
Measures of Error Absolute Error Absolute Percent Month, Demand, Forecast, Error, Squared, Error, Error, tDtFtEt Et2 |Et| (|Et|/Dt)(100) 1 200 225 –25 625 25 12.5% 2 240 220 20 400 20 8.3 3 300 285 15 225 15 5.0 4 270 290 –20 400 20 7.4 5 230 250 –20 400 20 8.7 6 260 240 20 400 20 7.7 7 210 250 –40 1600 40 19.0 8 275 240 35 1225 35 12.7 Total –15 5275 195 81.3% CFE = – 15 – 15 8 E = = – 1.875 5275 8 MSE = = 659.4 195 8 s = 27.4 MAD = = 24.4 81.3% 8 MAPE = = 10.2% Choosing a MethodForecast Error Example 12.7
Measures of Error Absolute Error Absolute Percent Month, Demand, Forecast, Error, Squared, Error, Error, tDtFtEt Et2 |Et| (|Et|/Dt)(100) 1 200 225 –25 625 25 12.5% 2 240 220 20 400 20 8.3 3 300 285 15 225 15 5.0 4 270 290 –20 400 20 7.4 5 230 250 –20 400 20 8.7 6 260 240 20 400 20 7.7 7 210 250 –40 1600 40 19.0 8 275 240 35 1225 35 12.7 Total –15 5275 195 81.3% CFE = – 15 – 15 8 E = = – 1.875 5275 8 MSE = = 659.4 195 8 s = 27.4 MAD = = 24.4 81.3% 8 MAPE = = 10.2% Choosing a MethodForecast Error Example 12.7
Choosing between time series methods • Assuming we decided time series is the right technique in general !! • Stable demand Vs. Dynamic demand • Adjust parameters; , n and • Combine techniques! • averaging forecasts results using different technique • evidences say better output
Causal models • Examples of related variables for Causal models • Value of property owned and the income levelof owner • Number of days holiday spent from home and family income and family size • Annual retail sales of washing machines and price, per capita incomeand new house completion
Causal models INPUTS THE MODEL OUTPUT Price X1 Per capita income X2 New house completion X3 Y Annual sales THE INDEPENDENT VARIABLES THE DEPENDENT VARIABLES
Forecasting with Causal models How do we build a model Price X1 Per capita income X2 New house completion X3 Y Annual sales Set these values Generate a forecast Run the model
The Causal forecasting process • Typically relates demand to explanatory variables • Input variables are the independent variables • The variable that we wish to predict is known as the dependent variable • Univariateproblems- one independent variable • Mulitvariate problems- more than one independent variable
Model building • The problem is finding an ‘adequate’ relationship • If Causal processes are clearly understood we may be able to construct model • More commonly, use a ‘flexible’ form of relationship and employ statistical methods to define it explicitly - regression • The key issue is its predictive accuracy
Y Dependent variable X Independent variable Causal MethodsLinear Regression Figure 12.2
Simple Linear Regression Model Y The simple linear regression model seeks to fit a line through various data over time. a x Yt = a + bx Ytis the regressed forecast value or dependent variable in the model, a is the intercept value of the regression line, and b is similar to the slope of the regression line.
Simple Linear Regression Formulas for Calculating “a” and “b”
Y Dependent variable X Independent variable Causal MethodsLinear Regression Figure 12.2
Regression equation: Y = a + bX Y Dependent variable X Independent variable Causal MethodsLinear Regression Figure 12.2
Regression equation: Y = a + bX Y Actual value of Y Dependent variable Value of X used to estimate Y X Independent variable Causal MethodsLinear Regression Figure 12.2
Regression equation: Y = a + bX Y Estimate of Y from regression equation Actual value of Y Dependent variable Value of X used to estimate Y X Independent variable Causal MethodsLinear Regression Figure 12.2
Deviation, or error Regression equation: Y = a + bX Y Estimate of Y from regression equation { Actual value of Y Dependent variable Value of X used to estimate Y X Independent variable Causal MethodsLinear Regression Figure 12.2
Sales Advertising Month (000 units) (000 $) 1 264 2.5 2 116 1.3 3 165 1.4 4 101 1.0 5 209 2.0 Causal MethodsLinear Regression Example 12.1
Sales Advertising Month (000 units) (000 $) 1 264 2.5 2 116 1.3 3 165 1.4 4 101 1.0 5 209 2.0 Causal MethodsLinear Regression a = – 8.136 b = 109.229X r = 0.98 r2 = 0.96 syx = 15.61 Example 12.1
300 — 250 — 200 — 150 — 100 — 50 Sales Advertising Month (000 units) (000 $) 1 264 2.5 2 116 1.3 3 165 1.4 4 101 1.0 5 209 2.0 a = – 8.136 b = 109.229X r = 0.98 r2 = 0.96 syx = 15.61 Sales (thousands of units) | | | | 1.0 1.5 2.0 2.5 Advertising (thousands of dollars) Causal MethodsLinear Regression Figure 12.3
300 — 250 — 200 — 150 — 100 — 50 Sales Advertising Month (000 units) (000 $) 1 264 2.5 2 116 1.3 3 165 1.4 4 101 1.0 5 209 2.0 a = – 8.136 b = 109.229X r = 0.98 r2 = 0.96 syx = 15.61 Sales (thousands of units) | | | | 1.0 1.5 2.0 2.5 Advertising (thousands of dollars) Causal MethodsLinear Regression Figure 12.3
300 — 250 — 200 — 150 — 100 — 50 Sales Advertising Month (000 units) (000 $) 1 264 2.5 2 116 1.3 3 165 1.4 4 101 1.0 5 209 2.0 a = – 8.136 b = 109.229X r = 0.98 r2 = 0.96 syx = 15.61 Sales (thousands of units) Y = – 8.136 + 109.229X | | | | 1.0 1.5 2.0 2.5 Advertising (thousands of dollars) Causal MethodsLinear Regression Figure 12.3
300 — 250 — 200 — 150 — 100 — 50 Sales Advertising Month (000 units) (000 $) 1 264 2.5 2 116 1.3 3 165 1.4 4 101 1.0 5 209 2.0 a = – 8.136 b = 109.229X r = 0.98 r2 = 0.96 syx = 15.61 Sales (thousands of units) Y = – 8.136 + 109.229X | | | | 1.0 1.5 2.0 2.5 Advertising (thousands of dollars) Causal MethodsLinear Regression Figure 12.3
300 — 250 — 200 — 150 — 100 — 50 Sales Advertising Month (000 units) (000 $) 1 264 2.5 2 116 1.3 3 165 1.4 4 101 1.0 5 209 2.0 a = – 8.136 b = 109.229X r = 0.98 r2 = 0.96 syx = 15.61 Sales (thousands of units) Y = – 8.136 + 109.229X | | | | 1.0 1.5 2.0 2.5 Forecast for Month 6 X = $1750, Y = – 8.136 + 109.229(1.75) Advertising (thousands of dollars) Causal MethodsLinear Regression Figure 12.3
300 — 250 — 200 — 150 — 100 — 50 Sales Advertising Month (000 units) (000 $) 1 264 2.5 2 116 1.3 3 165 1.4 4 101 1.0 5 209 2.0 a = – 8.136 b = 109.229X r = 0.98 r2 = 0.96 syx = 15.61 Sales (thousands of units) Y = – 8.136 + 109.229X | | | | 1.0 1.5 2.0 2.5 Forecast for Month 6 X = $1750, Y = 183.015, or 183,015 units Advertising (thousands of dollars) Causal MethodsLinear Regression Figure 12.3
300 — 250 — 200 — 150 — 100 — 50 Sales Advertising Month (000 units) (000 $) 1 264 2.5 2 116 1.3 3 165 1.4 4 101 1.0 5 209 2.0 a = – 8.136 b = 109.229X r = 0.98 r2 = 0.96 syx = 15.61 Sales (thousands of units) Y = – 8.136 + 109.229X | | | | 1.0 1.5 2.0 2.5 Advertising (thousands of dollars) Causal MethodsLinear Regression Figure 12.3
300 — 250 — 200 — 150 — 100 — 50 Sales Advertising Month (000 units) (000 $) 1 264 2.5 2 116 1.3 3 165 1.4 4 101 1.0 5 209 2.0 a = – 8.136 b = 109.229X r = 0.98 r2 = 0.96 syx = 15.61 Sales (thousands of units) Y = – 8.136 + 109.229X | | | | 1.0 1.5 2.0 2.5 Advertising (thousands of dollars) Causal MethodsLinear Regression Figure 12.3
Sales Advertising Month (000 units) (000 $) 1 264 2.5 2 116 1.3 3 165 1.4 4 101 1.0 5 209 2.0 Causal MethodsLinear Regression Example 12.1