1 / 20

Use the Pythagorean Theorem and its converse to solve problems.

Objectives. Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles. Vocabulary. Pythagorean triple.

pellerin
Download Presentation

Use the Pythagorean Theorem and its converse to solve problems.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.

  2. Vocabulary Pythagorean triple

  3. The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse. a2 + b2 = c2

  4. Example 1A: Using the Pythagorean Theorem Find the value of x. Give your answer in simplest radical form. a2 + b2 = c2 Pythagorean Theorem 22 + 62 = x2 Substitute 2 for a, 6 for b, and x for c. 40 = x2 Simplify. Find the positive square root. Simplify the radical.

  5. Example 1B: Using the Pythagorean Theorem Find the value of x. Give your answer in simplest radical form. a2 + b2 = c2 Pythagorean Theorem (x – 2)2 + 42 = x2 Substitute x – 2 for a, 4 for b, and x for c. x2 – 4x+ 4 + 16 = x2 Multiply. –4x+ 20 = 0 Combine like terms. 20 = 4x Add 4x to both sides. 5 = x Divide both sides by 4.

  6. Check It Out! Example 2 What if...? According to the recommended safety ratio of 4:1, how high will a 30-foot ladder reach when placed against a wall? Round to the nearest inch. Let x be the distance in feet from the foot of the ladder to the base of the wall. Then 4x is the distance in feet from the top of the ladder to the base of the wall.

  7. Check It Out! Example 2 Continued Pythagorean Theorem a2 + b2 = c2 Substitute 4x for a, x for b, and 30 for c. (4x)2 + x2 = 302 Multiply and combine like terms. 17x2 = 900 Since 4x is the distance in feet from the top of the ladder to the base of the wall, 4(7.28)  29 ft 1 in.

  8. A set of three nonzero whole numbers a, b, and c such that a2 + b2 = c2 is called a Pythagorean triple.

  9. The converse of the Pythagorean Theorem gives you a way to tell if a triangle is a right triangle when you know the side lengths.

  10. B c a A C b You can also use side lengths to classify a triangle as acute or obtuse.

  11. To understand why the Pythagorean inequalities are true, consider ∆ABC.

  12. Remember! By the Triangle Inequality Theorem, the sum of any two side lengths of a triangle is greater than the third side length.

  13. Example 4A: Classifying Triangles Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 5, 7, 10 Step 1 Determine if the measures form a triangle. By the Triangle Inequality Theorem, 5, 7, and 10 can be the side lengths of a triangle.

  14. ? c2 = a2 + b2 ? 102 = 52 + 72 ? 100 = 25 + 49 Example 4A Continued Step 2 Classify the triangle. Compare c2 to a2 + b2. Substitute the longest side for c. Multiply. 100 > 74 Add and compare. Since c2 > a2 + b2, the triangle is obtuse.

  15. Since 5 + 8 = 13 and 13 > 17, these cannot be the side lengths of a triangle. Example 4B: Classifying Triangles Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 5, 8, 17 Step 1 Determine if the measures form a triangle.

  16. Check It Out! Example 4a Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 7, 12, 16 Step 1 Determine if the measures form a triangle. By the Triangle Inequality Theorem, 7, 12, and 16 can be the side lengths of a triangle.

  17. ? c2 = a2 + b2 ? 162 = 122 + 72 ? 256 = 144 + 49 Check It Out! Example 4a Continued Step 2 Classify the triangle. Compare c2 to a2 + b2. Substitute the longest side for c. Multiply. 256 > 193 Add and compare. Since c2 > a2 + b2, the triangle is obtuse.

  18. Since 11 + 18 = 29 and 29 > 34, these cannot be the sides of a triangle. Check It Out! Example 4b Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 11, 18, 34 Step 1 Determine if the measures form a triangle.

  19. Check It Out! Example 4c Tell if the measures can be the side lengths of a triangle. If so, classify the triangle as acute, obtuse, or right. 3.8, 4.1, 5.2 Step 1 Determine if the measures form a triangle. By the Triangle Inequality Theorem, 3.8, 4.1, and 5.2 can be the side lengths of a triangle.

  20. ? c2 = a2 + b2 ? 5.22 = 3.82 + 4.12 ? 27.04 = 14.44 + 16.81 Check It Out! Example 4c Continued Step 2 Classify the triangle. Compare c2 to a2 + b2. Substitute the longest side for c. Multiply. 27.04 < 31.25 Add and compare. Since c2 < a2 + b2, the triangle is acute.

More Related