1 / 24

Introduction Form Factors and Observables Numerical results of lattice simulation

格子 QCD による 核子の一般化形状因子と クォーク角運動量の解析. Munehisa Ohtani ( Univ. Regensburg ) for QCDSF with D. Br ö mmel, M. G ö ckeler, Ph. H ä gler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Sch ä fer, G. Schierholz,

pepin
Download Presentation

Introduction Form Factors and Observables Numerical results of lattice simulation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 格子QCDによる 核子の一般化形状因子とクォーク角運動量の解析 Munehisa Ohtani(Univ. Regensburg) for QCDSF with D. Brömmel, M. Göckeler, Ph.Hägler, R. Horsley, Y. Nakamura, D.Pleiter, P.E.L. Rakow, A.Schäfer, G. Schierholz, W.Schroers, H. Stüben, J.M. Zanotti • Introduction • Form Factors and Observables • Numerical results of lattice simulation • - Axial FFs and quark spin • - 2nd Moments of GPD(vector) and total angular momentum • Summary 20 Nov. 横断研究会@ KEK

  2. Introduction  Generalized Parton Distributions of Nucleon q q' momentum transfer squared: t = (D  P'-P)2 longitudinal mt. transfer:  = -n ·D / 2 x+ x- H, E, … P P' • Non perturbative study on Nucleon structure

  3. Form Factors = H (x,0,0) = H (x,0,0) = HT(x,0,0)  F1(t) =dx H (x, x, t) GA(t)= dx H (x, x, t) GT(t)=dxHT(x, x, t)  local limit forward limit Fourier transf. Quark densityinb plane q(x, b2) = d2 D e–i Db H (x, x=0, D2) Generalized Parton Distributions PDF q(x) Dq(x) dq(x) GPDs as moments in the forward limit Angular momentum Jq= 1/2 dx x (H(x, x, 0) + E(x, x, 0)) u+d  1/2 (A20 + B20 )   sq= 1/2dx H(x, x, 0)u+d  1/2A20

  4. An,2k ,Bn,2k ,Cn are related to P |q g {m 1Dm 2 Dm n}q|P'  Calculate ratio of 2pt & 3pt correlation functions on lattice Extract GFF  LHPC, PRD68(2003)034505 Moments of GPD: Generalized Form Factors Polynomiality  X.-D.Ji, J.Phys.G24(1998)1181

  5.   A10u-d A10u+d B10u-d A20B20 gA 2 sq gP  xq 2 Jq-  xq  r 2A mp  mf2 ,ma2 ? ·DVCS - spin asymmetry - charge asymmetry ·nNscattering ·pion electroproduction ·muon capture GFF and physical quantities A10 B10u-d @ t = 0 Q Dk Slope, mpole  r 2EM  mV-2 ·eNscattering experiments Vector Meson Dominance ? PCAC & G-T relation Tensor Meson Dominance ?

  6. Simulation parameters b k volume a [fm] mp[GeV] • Nf =2Wilson fermionsw/ clover improvement • # of config: • 400-2200for each(b,k) • Physical unit translated byr0c/a • O(a) improved operators • non-perturbative • renormalization into • MS @ m = 2 GeV 5.20 0.0856 0.13420 0.13500 0.13550 1.347 0.956 0.670 163 32 〃 〃 〃 〃 5.25 0.0794 1.225 0.949 0.635 0.457 0.13460 0.13520 0.13575 0.13600 243 48 〃 163 32 〃 5.29 0.0753 0.13400 0.13500 0.13550 0.13590 0.13620 0.13632 1.511 1.102 0.857 0.629 0.414 0.345 243 48 〃 〃 〃 323 64 5.40 0.0672 243 48 〃 〃 〃 〃 〃 1.183 0.917 0.648 0.559 0.450 0.13500 0.13560 0.13610 0.13625 0.13640

  7. cf. A10u-d from expt: p + e e' + p + + n V.Bernard et.al. J.Phys.G 28(2002)R1 Dipole form: A10  t dependence of Axial Form Factor  A10u+d (t) withb = 5.29,k = 1.3632 -t [GeV2]

  8.  0.402 0.024 (@ mp = .14GeV) Heavy Baryon Chiral Perturbation Theory M.Diehl, A.Manashov, A.Schäfer, EPJ.A 29(2006) Chiral extrapolation and quark spin  A10u+d (t=0) : 2 su+d= DSu+d Strongmp dependence by “chiral log” term • HERMES, PRD75(2007)012007  mp 2[GeV2]

  9. t dependence of the 2nd Moments A20u-d (t), B20u-d (t) andC20u-d (t) withb = 5.29,k = 1.3632 -t [GeV2]

  10. x ~1 contribution inA20 broader tail ofA20int Moments of GPD: A10 vs. A20 An0u+d (t)/ An0u+d (0) withb = 5.29,k = 1.3632 -t [GeV2]

  11. K. Goeke et. al., PRC75(2007) in CQSM for comparison Dipole mass of A20 and tensor meson mD[GeV] Dipole form: A20 x. (1-t/mD2)2  Observed mass of f2

  12.  3param. in each GFFs tdependence via Generalized Form Factors in Chiral Perturbation M.Dorati, T.A.Gail and T.R.Hemmert, nucl-th/0703073

  13. A20u+d(t ) and covariantized Baryon ChPT

  14. M.Dorati et.al. nucl-th/0703073  xu+d 0.572 0.012 (@ mp = .14GeV) Chiral extrapolation of A20u+d(t =0) A20u+d (t=0)  CTEQ6 @m 2 = 4GeV2 mp 2[GeV2]

  15. A20u-d(t ) and covariantized Baryon ChPT

  16.  xu-d 0.198 0.008 (@ mp = .14GeV) Chiral extrapolation of A20u-d(t =0) A20u-d (t=0) Strongmp dependence by “chiral log” term  CTEQ6 @m 2 = 4GeV2 mp 2[GeV2]

  17. t  0  2 Jq-  xq in CQSM  Ju+d = 1/2  xu+d = 1 ) no dynamical gluon  K.Goeke et. al., PRC75(2007) in CQSM for comparison Dipole fit and forward limit of B20u,d(t ) B20q(t) -t [GeV2]

  18. B20u+d(t) and covariantized Baryon ChPT

  19. B20u+d (0) -0.120 0.023 (@ mp = .14GeV) Chiral extrapolation of B20u+d(0) B20u+d (0) Strongmp dependence by “chiral log” term mp 2[GeV2]

  20. B20u-d(t ) and covariantized Baryon ChPT

  21. B20u-d (0)0.269 0.020 (@ mp = .14GeV) Chiral extrapolation of B20u-d(0) B20u-d (0) mp 2[GeV2]

  22.  J u 0.230 0.008  J d -0.004 0.008 (@ mp = .14GeV) Chiral extrapolation of Ju ,Jd Ji’s sum rule :  J q = 1/2 [ A20q(0) +B20q(0) ] mp 2[GeV2]

  23.  J u+d 0.226 0.013  s u+d 0.201 0.024  L u+d 0.025 0.027 (@ mp = .14GeV) decomposition of quark angular momentum • Ju+d = 1/2 [ A20u+d (0) +B20u+d(0) ]  su+d = 1/2 A20u+d (0) ; Lu+d = Ju+d- su+d  mp 2[GeV2]

  24. Summary and outlook • lattice simulation of moments of Generaized Parton Distribution • spin content, transverse quark distribution, DVCS,… • dipole mass of A20 is comparable with tensor meson mass. • A20u-d and B20u+d have strong “chiral log” corrections. • Chiral extrapolation of A20(0) & B20(0)via BChPTnucl-th/0703073 leads •  J u 0.230 0.008 •  J d -0.004 0.008 • as a preliminary. • lighter mp , larger volume (for t0), Finite size corrections, Continuum limit, disconnected diagram, Chirally improved fermions, higher twist, angular momentum of gluon, …  J u+d 0.226 0.013  s u+d 0.201 0.024 (@ mp = .14GeV)  L u+d 0.025 0.027

More Related