140 likes | 234 Views
6.1 Using Properties of Exponents. p. 323. Properties of Exponents a&b are real numbers, m&n are integers Follow along on page 323. You must memorize the formulas. Product Property : a m * a n =a m+n Power of a Power Property : (a m ) n =a mn Power of a Product Property : (ab) m =a m b m
E N D
Properties of Exponentsa&b are real numbers, m&n are integersFollow along on page 323. You must memorize the formulas. • Product Property: am * an=am+n • Power of a Power Property: (am)n=amn • Power of a Product Property: (ab)m=ambm • Negative Exponent Property: a-m= ; a≠0 • Zero Exponent Property: a0=1; a≠0 • Quotient of Powers: am= am-n;a≠0 an • Power of Quotient: b≠0
Example A – Product Property (-n)4 * (-n)5 = (-n)4+5 = (-n)9 = -n9 = • (-5)4 * (-5)5 = • (-5)4+5 = • (-5)9 = • -1953125 Calculators will be rendered useless. You must memorize the formulas.
Example B • x5 * x2 = • x5+2 = • x7 You must memorize the formulas.
Example 1 on page 324 – Power of a Power • (23)4 = • 23*4 = • 212 = • 4096 (a3)4 = a3*4 = a12 = Calculators will be rendered useless. You must memorize the formulas.
Example 1-b • (34)2 = • 34*2 = • 38 = • 6561 (b4)2 = b4*2 = b8 = Calculators will be rendered useless. You must memorize the formulas.
Example 1-c – Neg. Exponent • (-5)-6(-5)4 = • (-5)-6+4 = • (-5)-2 = (-c)-6(-c)4 = (-c)-6+4 = (-c)-2 = 1/(-c) 2 = 1/c 2 Calculators will be rendered useless. You must memorize the formulas.
Example 2B – Zero Exponent • (7b-3)2 b5 b = • 72 b-3*2 b5 b = • 49 b-6+5+1 = • 49b0 = • 49
Scientific Notation • 131,400,000,000= 1.314 x 1011 Put that number here! Move the decimal behind the 1st number How many places did you have to move the decimal?
131,400,000,000 = 5,284,000 1.314 x 1011= 5.284 x 106 Example 4 pg. 325– Scientific Notation