140 likes | 264 Views
6.1 Using Properties of Exponents. p. 323. Properties of Exponents a&b are real numbers, m&n are integers. Product Property : a m * a n =a m+n Power of a Power Property : (a m ) n =a mn Power of a Product Property : (ab) m =a m b m Negative Exponent Property : a -m = ; a ≠0
E N D
Properties of Exponentsa&b are real numbers, m&n are integers • Product Property: am * an=am+n • Power of a Power Property: (am)n=amn • Power of a Product Property: (ab)m=ambm • Negative Exponent Property: a-m= ; a≠0 • Zero Exponent Property: a0=1; a≠0 • Quotient of Powers: am= am-n;a≠0 an • Power of Quotient: b≠0
Example 1 – Product Property • (-5)4 * (-5)5 = • (-5)4+5 = • (-5)9 = • -1953125
Example 2 • x5 * x2 = • x5+2 = • x7
Example 3 – Power of a Power • (23)4 = • 23*4 = • 212 = • 4096
Example 4 • (34)2 = • 34*2 = • 38 = • 6561
Example 5 – Neg. Exponent • (-5)-6(-5)4 = • (-5)-6+4 = • (-5)-2 =
Example 8 – Zero Exponent • (7b-3)2 b5 b = • 72 b-3*2 b5 b = • 49 b-6+5+1 = • 49b0 = • 49
Scientific Notation • 131,400,000,000= 1.314 x 1011 Put that number here! Move the decimal behind the 1st number How many places did you have to move the decimal?
131,400,000,000 = 5,284,000 1.314 x 1011= 5.284 x 106 Example – Scientific Notation